Step |
Hyp |
Ref |
Expression |
1 |
|
infxpenc.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
infxpenc.2 |
⊢ ( 𝜑 → ω ⊆ 𝐴 ) |
3 |
|
infxpenc.3 |
⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) |
4 |
|
infxpenc.4 |
⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) |
5 |
|
infxpenc.5 |
⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) |
6 |
|
infxpenc.6 |
⊢ ( 𝜑 → 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
7 |
|
infxpenc.k |
⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) |
8 |
|
infxpenc.h |
⊢ 𝐻 = ( ( ( ω CNF 𝑊 ) ∘ 𝐾 ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) |
9 |
|
infxpenc.l |
⊢ 𝐿 = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( 𝑌 ∘ ◡ 𝑋 ) ) ) ) |
10 |
|
infxpenc.x |
⊢ 𝑋 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) |
11 |
|
infxpenc.y |
⊢ 𝑌 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) |
12 |
|
infxpenc.j |
⊢ 𝐽 = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ 𝐿 ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) |
13 |
|
infxpenc.z |
⊢ 𝑍 = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) |
14 |
|
infxpenc.t |
⊢ 𝑇 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) |
15 |
|
infxpenc.g |
⊢ 𝐺 = ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) |
16 |
|
f1ocnv |
⊢ ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) → ◡ 𝑁 : ( ω ↑o 𝑊 ) –1-1-onto→ 𝐴 ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → ◡ 𝑁 : ( ω ↑o 𝑊 ) –1-1-onto→ 𝐴 ) |
18 |
|
f1oi |
⊢ ( I ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝑊 |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝑊 ) |
20 |
|
omelon |
⊢ ω ∈ On |
21 |
20
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
22 |
|
2on |
⊢ 2o ∈ On |
23 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 2o ∈ On ) → ( ω ↑o 2o ) ∈ On ) |
24 |
21 22 23
|
sylancl |
⊢ ( 𝜑 → ( ω ↑o 2o ) ∈ On ) |
25 |
22
|
a1i |
⊢ ( 𝜑 → 2o ∈ On ) |
26 |
|
peano1 |
⊢ ∅ ∈ ω |
27 |
26
|
a1i |
⊢ ( 𝜑 → ∅ ∈ ω ) |
28 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 2o ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 2o ) ) |
29 |
21 25 27 28
|
syl21anc |
⊢ ( 𝜑 → ∅ ∈ ( ω ↑o 2o ) ) |
30 |
|
ondif1 |
⊢ ( ( ω ↑o 2o ) ∈ ( On ∖ 1o ) ↔ ( ( ω ↑o 2o ) ∈ On ∧ ∅ ∈ ( ω ↑o 2o ) ) ) |
31 |
24 29 30
|
sylanbrc |
⊢ ( 𝜑 → ( ω ↑o 2o ) ∈ ( On ∖ 1o ) ) |
32 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑊 ∈ On ) |
33 |
4 19 31 32 21 32 5 7 8
|
oef1o |
⊢ ( 𝜑 → 𝐻 : ( ( ω ↑o 2o ) ↑o 𝑊 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
34 |
|
f1oi |
⊢ ( I ↾ ω ) : ω –1-1-onto→ ω |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( I ↾ ω ) : ω –1-1-onto→ ω ) |
36 |
10 11
|
omf1o |
⊢ ( ( 𝑊 ∈ On ∧ 2o ∈ On ) → ( 𝑌 ∘ ◡ 𝑋 ) : ( 𝑊 ·o 2o ) –1-1-onto→ ( 2o ·o 𝑊 ) ) |
37 |
32 22 36
|
sylancl |
⊢ ( 𝜑 → ( 𝑌 ∘ ◡ 𝑋 ) : ( 𝑊 ·o 2o ) –1-1-onto→ ( 2o ·o 𝑊 ) ) |
38 |
|
ondif1 |
⊢ ( ω ∈ ( On ∖ 1o ) ↔ ( ω ∈ On ∧ ∅ ∈ ω ) ) |
39 |
20 26 38
|
mpbir2an |
⊢ ω ∈ ( On ∖ 1o ) |
40 |
39
|
a1i |
⊢ ( 𝜑 → ω ∈ ( On ∖ 1o ) ) |
41 |
|
omcl |
⊢ ( ( 𝑊 ∈ On ∧ 2o ∈ On ) → ( 𝑊 ·o 2o ) ∈ On ) |
42 |
32 22 41
|
sylancl |
⊢ ( 𝜑 → ( 𝑊 ·o 2o ) ∈ On ) |
43 |
|
omcl |
⊢ ( ( 2o ∈ On ∧ 𝑊 ∈ On ) → ( 2o ·o 𝑊 ) ∈ On ) |
44 |
25 32 43
|
syl2anc |
⊢ ( 𝜑 → ( 2o ·o 𝑊 ) ∈ On ) |
45 |
|
fvresi |
⊢ ( ∅ ∈ ω → ( ( I ↾ ω ) ‘ ∅ ) = ∅ ) |
46 |
26 45
|
mp1i |
⊢ ( 𝜑 → ( ( I ↾ ω ) ‘ ∅ ) = ∅ ) |
47 |
35 37 40 42 21 44 46 9 12
|
oef1o |
⊢ ( 𝜑 → 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o ( 2o ·o 𝑊 ) ) ) |
48 |
|
oeoe |
⊢ ( ( ω ∈ On ∧ 2o ∈ On ∧ 𝑊 ∈ On ) → ( ( ω ↑o 2o ) ↑o 𝑊 ) = ( ω ↑o ( 2o ·o 𝑊 ) ) ) |
49 |
20 25 32 48
|
mp3an2i |
⊢ ( 𝜑 → ( ( ω ↑o 2o ) ↑o 𝑊 ) = ( ω ↑o ( 2o ·o 𝑊 ) ) ) |
50 |
49
|
f1oeq3d |
⊢ ( 𝜑 → ( 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ( ω ↑o 2o ) ↑o 𝑊 ) ↔ 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o ( 2o ·o 𝑊 ) ) ) ) |
51 |
47 50
|
mpbird |
⊢ ( 𝜑 → 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ( ω ↑o 2o ) ↑o 𝑊 ) ) |
52 |
|
f1oco |
⊢ ( ( 𝐻 : ( ( ω ↑o 2o ) ↑o 𝑊 ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ( ω ↑o 2o ) ↑o 𝑊 ) ) → ( 𝐻 ∘ 𝐽 ) : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
53 |
33 51 52
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐽 ) : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
54 |
|
df-2o |
⊢ 2o = suc 1o |
55 |
54
|
oveq2i |
⊢ ( 𝑊 ·o 2o ) = ( 𝑊 ·o suc 1o ) |
56 |
|
1on |
⊢ 1o ∈ On |
57 |
|
omsuc |
⊢ ( ( 𝑊 ∈ On ∧ 1o ∈ On ) → ( 𝑊 ·o suc 1o ) = ( ( 𝑊 ·o 1o ) +o 𝑊 ) ) |
58 |
32 56 57
|
sylancl |
⊢ ( 𝜑 → ( 𝑊 ·o suc 1o ) = ( ( 𝑊 ·o 1o ) +o 𝑊 ) ) |
59 |
55 58
|
eqtrid |
⊢ ( 𝜑 → ( 𝑊 ·o 2o ) = ( ( 𝑊 ·o 1o ) +o 𝑊 ) ) |
60 |
|
om1 |
⊢ ( 𝑊 ∈ On → ( 𝑊 ·o 1o ) = 𝑊 ) |
61 |
32 60
|
syl |
⊢ ( 𝜑 → ( 𝑊 ·o 1o ) = 𝑊 ) |
62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑊 ·o 1o ) +o 𝑊 ) = ( 𝑊 +o 𝑊 ) ) |
63 |
59 62
|
eqtrd |
⊢ ( 𝜑 → ( 𝑊 ·o 2o ) = ( 𝑊 +o 𝑊 ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝜑 → ( ω ↑o ( 𝑊 ·o 2o ) ) = ( ω ↑o ( 𝑊 +o 𝑊 ) ) ) |
65 |
|
oeoa |
⊢ ( ( ω ∈ On ∧ 𝑊 ∈ On ∧ 𝑊 ∈ On ) → ( ω ↑o ( 𝑊 +o 𝑊 ) ) = ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
66 |
20 32 32 65
|
mp3an2i |
⊢ ( 𝜑 → ( ω ↑o ( 𝑊 +o 𝑊 ) ) = ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
67 |
64 66
|
eqtrd |
⊢ ( 𝜑 → ( ω ↑o ( 𝑊 ·o 2o ) ) = ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
68 |
67
|
f1oeq2d |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐽 ) : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝐻 ∘ 𝐽 ) : ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
69 |
53 68
|
mpbid |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐽 ) : ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
70 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝑊 ∈ On ) → ( ω ↑o 𝑊 ) ∈ On ) |
71 |
21 32 70
|
syl2anc |
⊢ ( 𝜑 → ( ω ↑o 𝑊 ) ∈ On ) |
72 |
13
|
omxpenlem |
⊢ ( ( ( ω ↑o 𝑊 ) ∈ On ∧ ( ω ↑o 𝑊 ) ∈ On ) → 𝑍 : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
73 |
71 71 72
|
syl2anc |
⊢ ( 𝜑 → 𝑍 : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
74 |
|
f1oco |
⊢ ( ( ( 𝐻 ∘ 𝐽 ) : ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ 𝑍 : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
75 |
69 73 74
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
76 |
|
f1of |
⊢ ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) → 𝑁 : 𝐴 ⟶ ( ω ↑o 𝑊 ) ) |
77 |
6 76
|
syl |
⊢ ( 𝜑 → 𝑁 : 𝐴 ⟶ ( ω ↑o 𝑊 ) ) |
78 |
77
|
feqmptd |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑥 ) ) ) |
79 |
78
|
f1oeq1d |
⊢ ( 𝜑 → ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑥 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
80 |
6 79
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑥 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
81 |
77
|
feqmptd |
⊢ ( 𝜑 → 𝑁 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑦 ) ) ) |
82 |
81
|
f1oeq1d |
⊢ ( 𝜑 → ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑦 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
83 |
6 82
|
mpbid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑦 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
84 |
80 83
|
xpf1o |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) |
85 |
|
f1oeq1 |
⊢ ( 𝑇 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) → ( 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) ) |
86 |
14 85
|
ax-mp |
⊢ ( 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) |
87 |
84 86
|
sylibr |
⊢ ( 𝜑 → 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) |
88 |
|
f1oco |
⊢ ( ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) → ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
89 |
75 87 88
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
90 |
|
f1oco |
⊢ ( ( ◡ 𝑁 : ( ω ↑o 𝑊 ) –1-1-onto→ 𝐴 ∧ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) → ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
91 |
17 89 90
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
92 |
|
f1oeq1 |
⊢ ( 𝐺 = ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) → ( 𝐺 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ↔ ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) ) |
93 |
15 92
|
ax-mp |
⊢ ( 𝐺 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ↔ ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
94 |
91 93
|
sylibr |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |