| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infxpenc2.1 | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 2 |  | infxpenc2.2 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 3 |  | infxpenc2.3 | ⊢ 𝑊  =  ( ◡ ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ ran  ( 𝑛 ‘ 𝑏 ) ) | 
						
							| 4 | 2 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐴 )  →  ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 5 | 4 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  𝑤  →  ( ω  ↑o  𝑥 )  =  ( ω  ↑o  𝑤 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) )  =  ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) | 
						
							| 9 |  | ovex | ⊢ ( ω  ↑o  𝑤 )  ∈  V | 
						
							| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑤  ∈  ( On  ∖  1o )  →  ( ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ 𝑤 )  =  ( ω  ↑o  𝑤 ) ) | 
						
							| 11 | 10 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ 𝑤 )  =  ( ω  ↑o  𝑤 ) ) | 
						
							| 12 |  | f1ofo | ⊢ ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 )  →  ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω  ↑o  𝑤 ) ) | 
						
							| 13 | 12 | ad2antll | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω  ↑o  𝑤 ) ) | 
						
							| 14 |  | forn | ⊢ ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω  ↑o  𝑤 )  →  ran  ( 𝑛 ‘ 𝑏 )  =  ( ω  ↑o  𝑤 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ran  ( 𝑛 ‘ 𝑏 )  =  ( ω  ↑o  𝑤 ) ) | 
						
							| 16 | 11 15 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ 𝑤 )  =  ran  ( 𝑛 ‘ 𝑏 ) ) | 
						
							| 17 |  | ovex | ⊢ ( ω  ↑o  𝑥 )  ∈  V | 
						
							| 18 | 17 | 2a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( 𝑥  ∈  ( On  ∖  1o )  →  ( ω  ↑o  𝑥 )  ∈  V ) ) | 
						
							| 19 |  | omelon | ⊢ ω  ∈  On | 
						
							| 20 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 21 |  | ondif2 | ⊢ ( ω  ∈  ( On  ∖  2o )  ↔  ( ω  ∈  On  ∧  1o  ∈  ω ) ) | 
						
							| 22 | 19 20 21 | mpbir2an | ⊢ ω  ∈  ( On  ∖  2o ) | 
						
							| 23 |  | eldifi | ⊢ ( 𝑥  ∈  ( On  ∖  1o )  →  𝑥  ∈  On ) | 
						
							| 24 | 23 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  ∧  ( 𝑥  ∈  ( On  ∖  1o )  ∧  𝑦  ∈  ( On  ∖  1o ) ) )  →  𝑥  ∈  On ) | 
						
							| 25 |  | eldifi | ⊢ ( 𝑦  ∈  ( On  ∖  1o )  →  𝑦  ∈  On ) | 
						
							| 26 | 25 | ad2antll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  ∧  ( 𝑥  ∈  ( On  ∖  1o )  ∧  𝑦  ∈  ( On  ∖  1o ) ) )  →  𝑦  ∈  On ) | 
						
							| 27 |  | oecan | ⊢ ( ( ω  ∈  ( On  ∖  2o )  ∧  𝑥  ∈  On  ∧  𝑦  ∈  On )  →  ( ( ω  ↑o  𝑥 )  =  ( ω  ↑o  𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 28 | 22 24 26 27 | mp3an2i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  ∧  ( 𝑥  ∈  ( On  ∖  1o )  ∧  𝑦  ∈  ( On  ∖  1o ) ) )  →  ( ( ω  ↑o  𝑥 )  =  ( ω  ↑o  𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ( 𝑥  ∈  ( On  ∖  1o )  ∧  𝑦  ∈  ( On  ∖  1o ) )  →  ( ( ω  ↑o  𝑥 )  =  ( ω  ↑o  𝑦 )  ↔  𝑥  =  𝑦 ) ) ) | 
						
							| 30 | 18 29 | dom2lem | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) : ( On  ∖  1o ) –1-1→ V ) | 
						
							| 31 |  | f1f1orn | ⊢ ( ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) : ( On  ∖  1o ) –1-1→ V  →  ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) : ( On  ∖  1o ) –1-1-onto→ ran  ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) : ( On  ∖  1o ) –1-1-onto→ ran  ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 33 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  𝑤  ∈  ( On  ∖  1o ) ) | 
						
							| 34 |  | f1ocnvfv | ⊢ ( ( ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) : ( On  ∖  1o ) –1-1-onto→ ran  ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) )  ∧  𝑤  ∈  ( On  ∖  1o ) )  →  ( ( ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ 𝑤 )  =  ran  ( 𝑛 ‘ 𝑏 )  →  ( ◡ ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ ran  ( 𝑛 ‘ 𝑏 ) )  =  𝑤 ) ) | 
						
							| 35 | 32 33 34 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ( ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ 𝑤 )  =  ran  ( 𝑛 ‘ 𝑏 )  →  ( ◡ ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ ran  ( 𝑛 ‘ 𝑏 ) )  =  𝑤 ) ) | 
						
							| 36 | 16 35 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ◡ ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ ran  ( 𝑛 ‘ 𝑏 ) )  =  𝑤 ) | 
						
							| 37 | 3 36 | eqtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  𝑊  =  𝑤 ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( 𝑊  ∈  ( On  ∖  1o )  ↔  𝑤  ∈  ( On  ∖  1o ) ) ) | 
						
							| 39 | 37 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ω  ↑o  𝑊 )  =  ( ω  ↑o  𝑤 ) ) | 
						
							| 40 | 39 | f1oeq3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 )  ↔  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 41 | 38 40 | anbi12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( ( 𝑊  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) )  ↔  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) ) | 
						
							| 42 | 6 41 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  ∧  ( 𝑤  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) )  →  ( 𝑊  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) ) | 
						
							| 43 | 5 42 | rexlimddv | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ( 𝑊  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) ) |