Step |
Hyp |
Ref |
Expression |
1 |
|
infxpenc2.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
infxpenc2.2 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
3 |
|
infxpenc2.3 |
⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) |
4 |
2
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
5 |
4
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) |
6 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( ω ↑o 𝑥 ) = ( ω ↑o 𝑤 ) ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) = ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) |
9 |
|
ovex |
⊢ ( ω ↑o 𝑤 ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑤 ∈ ( On ∖ 1o ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ( ω ↑o 𝑤 ) ) |
11 |
10
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ( ω ↑o 𝑤 ) ) |
12 |
|
f1ofo |
⊢ ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) → ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω ↑o 𝑤 ) ) |
13 |
12
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω ↑o 𝑤 ) ) |
14 |
|
forn |
⊢ ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω ↑o 𝑤 ) → ran ( 𝑛 ‘ 𝑏 ) = ( ω ↑o 𝑤 ) ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ran ( 𝑛 ‘ 𝑏 ) = ( ω ↑o 𝑤 ) ) |
16 |
11 15
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ran ( 𝑛 ‘ 𝑏 ) ) |
17 |
|
ovex |
⊢ ( ω ↑o 𝑥 ) ∈ V |
18 |
17
|
2a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑥 ∈ ( On ∖ 1o ) → ( ω ↑o 𝑥 ) ∈ V ) ) |
19 |
|
omelon |
⊢ ω ∈ On |
20 |
|
1onn |
⊢ 1o ∈ ω |
21 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
22 |
19 20 21
|
mpbir2an |
⊢ ω ∈ ( On ∖ 2o ) |
23 |
|
eldifi |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) → 𝑥 ∈ On ) |
24 |
23
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ∧ ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) ) → 𝑥 ∈ On ) |
25 |
|
eldifi |
⊢ ( 𝑦 ∈ ( On ∖ 1o ) → 𝑦 ∈ On ) |
26 |
25
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ∧ ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) ) → 𝑦 ∈ On ) |
27 |
|
oecan |
⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
28 |
22 24 26 27
|
mp3an2i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ∧ ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) ) → ( ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
29 |
28
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) → ( ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) ) |
30 |
18 29
|
dom2lem |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1→ V ) |
31 |
|
f1f1orn |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1→ V → ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1-onto→ ran ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1-onto→ ran ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ) |
33 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → 𝑤 ∈ ( On ∖ 1o ) ) |
34 |
|
f1ocnvfv |
⊢ ( ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1-onto→ ran ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ∧ 𝑤 ∈ ( On ∖ 1o ) ) → ( ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ran ( 𝑛 ‘ 𝑏 ) → ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) = 𝑤 ) ) |
35 |
32 33 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ran ( 𝑛 ‘ 𝑏 ) → ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) = 𝑤 ) ) |
36 |
16 35
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) = 𝑤 ) |
37 |
3 36
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → 𝑊 = 𝑤 ) |
38 |
37
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ↔ 𝑤 ∈ ( On ∖ 1o ) ) ) |
39 |
37
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ω ↑o 𝑊 ) = ( ω ↑o 𝑤 ) ) |
40 |
39
|
f1oeq3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
41 |
38 40
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ↔ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ) |
42 |
6 41
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
43 |
5 42
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |