| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infxpenc2.1 | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 2 |  | infxpenc2.2 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 3 |  | infxpenc2.3 | ⊢ 𝑊  =  ( ◡ ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ ran  ( 𝑛 ‘ 𝑏 ) ) | 
						
							| 4 |  | infxpenc2.4 | ⊢ ( 𝜑  →  𝐹 : ( ω  ↑o  2o ) –1-1-onto→ ω ) | 
						
							| 5 |  | infxpenc2.5 | ⊢ ( 𝜑  →  ( 𝐹 ‘ ∅ )  =  ∅ ) | 
						
							| 6 |  | infxpenc2.k | ⊢ 𝐾  =  ( 𝑦  ∈  { 𝑥  ∈  ( ( ω  ↑o  2o )  ↑m  𝑊 )  ∣  𝑥  finSupp  ∅ }  ↦  ( 𝐹  ∘  ( 𝑦  ∘  ◡ (  I   ↾  𝑊 ) ) ) ) | 
						
							| 7 |  | infxpenc2.h | ⊢ 𝐻  =  ( ( ( ω  CNF  𝑊 )  ∘  𝐾 )  ∘  ◡ ( ( ω  ↑o  2o )  CNF  𝑊 ) ) | 
						
							| 8 |  | infxpenc2.l | ⊢ 𝐿  =  ( 𝑦  ∈  { 𝑥  ∈  ( ω  ↑m  ( 𝑊  ·o  2o ) )  ∣  𝑥  finSupp  ∅ }  ↦  ( (  I   ↾  ω )  ∘  ( 𝑦  ∘  ◡ ( 𝑌  ∘  ◡ 𝑋 ) ) ) ) | 
						
							| 9 |  | infxpenc2.x | ⊢ 𝑋  =  ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) | 
						
							| 10 |  | infxpenc2.y | ⊢ 𝑌  =  ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) ) | 
						
							| 11 |  | infxpenc2.j | ⊢ 𝐽  =  ( ( ( ω  CNF  ( 2o  ·o  𝑊 ) )  ∘  𝐿 )  ∘  ◡ ( ω  CNF  ( 𝑊  ·o  2o ) ) ) | 
						
							| 12 |  | infxpenc2.z | ⊢ 𝑍  =  ( 𝑥  ∈  ( ω  ↑o  𝑊 ) ,  𝑦  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( ω  ↑o  𝑊 )  ·o  𝑥 )  +o  𝑦 ) ) | 
						
							| 13 |  | infxpenc2.t | ⊢ 𝑇  =  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) ,  ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) | 
						
							| 14 |  | infxpenc2.g | ⊢ 𝐺  =  ( ◡ ( 𝑛 ‘ 𝑏 )  ∘  ( ( ( 𝐻  ∘  𝐽 )  ∘  𝑍 )  ∘  𝑇 ) ) | 
						
							| 15 | 1 | mptexd | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐴  ↦  𝐺 )  ∈  V ) | 
						
							| 16 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝐴  ∈  On ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝑏  ∈  𝐴 ) | 
						
							| 18 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴 )  →  𝑏  ∈  On ) | 
						
							| 19 | 16 17 18 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝑏  ∈  On ) | 
						
							| 20 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ω  ⊆  𝑏 ) | 
						
							| 21 | 1 2 3 | infxpenc2lem1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ( 𝑊  ∈  ( On  ∖  1o )  ∧  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝑊  ∈  ( On  ∖  1o ) ) | 
						
							| 23 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝐹 : ( ω  ↑o  2o ) –1-1-onto→ ω ) | 
						
							| 24 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ( 𝐹 ‘ ∅ )  =  ∅ ) | 
						
							| 25 | 21 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) | 
						
							| 26 | 19 20 22 23 24 25 6 7 8 9 10 11 12 13 14 | infxpenc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝐺 : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) | 
						
							| 27 |  | f1of | ⊢ ( 𝐺 : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏  →  𝐺 : ( 𝑏  ×  𝑏 ) ⟶ 𝑏 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝐺 : ( 𝑏  ×  𝑏 ) ⟶ 𝑏 ) | 
						
							| 29 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 30 | 29 29 | xpex | ⊢ ( 𝑏  ×  𝑏 )  ∈  V | 
						
							| 31 |  | fex | ⊢ ( ( 𝐺 : ( 𝑏  ×  𝑏 ) ⟶ 𝑏  ∧  ( 𝑏  ×  𝑏 )  ∈  V )  →  𝐺  ∈  V ) | 
						
							| 32 | 28 30 31 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  𝐺  ∈  V ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑏  ∈  𝐴  ↦  𝐺 )  =  ( 𝑏  ∈  𝐴  ↦  𝐺 ) | 
						
							| 34 | 33 | fvmpt2 | ⊢ ( ( 𝑏  ∈  𝐴  ∧  𝐺  ∈  V )  →  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 )  =  𝐺 ) | 
						
							| 35 | 17 32 34 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 )  =  𝐺 ) | 
						
							| 36 | 35 | f1oeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ( ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏  ↔  𝐺 : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) | 
						
							| 37 | 26 36 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 ) )  →  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) | 
						
							| 38 | 37 | expr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐴 )  →  ( ω  ⊆  𝑏  →  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) | 
						
							| 39 | 38 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) | 
						
							| 40 |  | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏  ∈  𝐴  ↦  𝐺 ) | 
						
							| 41 | 40 | nfeq2 | ⊢ Ⅎ 𝑏 𝑔  =  ( 𝑏  ∈  𝐴  ↦  𝐺 ) | 
						
							| 42 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑏  ∈  𝐴  ↦  𝐺 )  →  ( 𝑔 ‘ 𝑏 )  =  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) ) | 
						
							| 43 | 42 | f1oeq1d | ⊢ ( 𝑔  =  ( 𝑏  ∈  𝐴  ↦  𝐺 )  →  ( ( 𝑔 ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏  ↔  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) | 
						
							| 44 | 43 | imbi2d | ⊢ ( 𝑔  =  ( 𝑏  ∈  𝐴  ↦  𝐺 )  →  ( ( ω  ⊆  𝑏  →  ( 𝑔 ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 )  ↔  ( ω  ⊆  𝑏  →  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) ) | 
						
							| 45 | 41 44 | ralbid | ⊢ ( 𝑔  =  ( 𝑏  ∈  𝐴  ↦  𝐺 )  →  ( ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ( 𝑔 ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 )  ↔  ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ( ( 𝑏  ∈  𝐴  ↦  𝐺 ) ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) ) | 
						
							| 46 | 15 39 45 | spcedv | ⊢ ( 𝜑  →  ∃ 𝑔 ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ( 𝑔 ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) |