Step |
Hyp |
Ref |
Expression |
1 |
|
infxpenc2.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
infxpenc2.2 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
3 |
|
infxpenc2.3 |
⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) |
4 |
|
infxpenc2.4 |
⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) |
5 |
|
infxpenc2.5 |
⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) |
6 |
|
infxpenc2.k |
⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) |
7 |
|
infxpenc2.h |
⊢ 𝐻 = ( ( ( ω CNF 𝑊 ) ∘ 𝐾 ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) |
8 |
|
infxpenc2.l |
⊢ 𝐿 = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( 𝑌 ∘ ◡ 𝑋 ) ) ) ) |
9 |
|
infxpenc2.x |
⊢ 𝑋 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) |
10 |
|
infxpenc2.y |
⊢ 𝑌 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) |
11 |
|
infxpenc2.j |
⊢ 𝐽 = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ 𝐿 ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) |
12 |
|
infxpenc2.z |
⊢ 𝑍 = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) |
13 |
|
infxpenc2.t |
⊢ 𝑇 = ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) |
14 |
|
infxpenc2.g |
⊢ 𝐺 = ( ◡ ( 𝑛 ‘ 𝑏 ) ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) |
15 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ∈ V ) |
16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐴 ∈ On ) |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝑏 ∈ 𝐴 ) |
18 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ On ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝑏 ∈ On ) |
20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ω ⊆ 𝑏 ) |
21 |
1 2 3
|
infxpenc2lem1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
22 |
21
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝑊 ∈ ( On ∖ 1o ) ) |
23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) |
24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝐹 ‘ ∅ ) = ∅ ) |
25 |
21
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
26 |
19 20 22 23 24 25 6 7 8 9 10 11 12 13 14
|
infxpenc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐺 : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) |
27 |
|
f1of |
⊢ ( 𝐺 : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 → 𝐺 : ( 𝑏 × 𝑏 ) ⟶ 𝑏 ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐺 : ( 𝑏 × 𝑏 ) ⟶ 𝑏 ) |
29 |
|
vex |
⊢ 𝑏 ∈ V |
30 |
29 29
|
xpex |
⊢ ( 𝑏 × 𝑏 ) ∈ V |
31 |
|
fex |
⊢ ( ( 𝐺 : ( 𝑏 × 𝑏 ) ⟶ 𝑏 ∧ ( 𝑏 × 𝑏 ) ∈ V ) → 𝐺 ∈ V ) |
32 |
28 30 31
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐺 ∈ V ) |
33 |
|
eqid |
⊢ ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) |
34 |
33
|
fvmpt2 |
⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝐺 ∈ V ) → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) = 𝐺 ) |
35 |
17 32 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) = 𝐺 ) |
36 |
35
|
f1oeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ↔ 𝐺 : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
37 |
26 36
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) |
38 |
37
|
expr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
39 |
38
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
40 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) |
41 |
40
|
nfeq2 |
⊢ Ⅎ 𝑏 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) |
42 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( 𝑔 ‘ 𝑏 ) = ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) ) |
43 |
42
|
f1oeq1d |
⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ↔ ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
44 |
43
|
imbi2d |
⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ↔ ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ) |
45 |
41 44
|
ralbid |
⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ) |
46 |
15 39 45
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |