| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infxpenc2.1 | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 2 |  | infxpenc2.2 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 3 |  | infxpenc2.3 | ⊢ 𝑊  =  ( ◡ ( 𝑥  ∈  ( On  ∖  1o )  ↦  ( ω  ↑o  𝑥 ) ) ‘ ran  ( 𝑛 ‘ 𝑏 ) ) | 
						
							| 4 |  | infxpenc2.4 | ⊢ ( 𝜑  →  𝐹 : ( ω  ↑o  2o ) –1-1-onto→ ω ) | 
						
							| 5 |  | infxpenc2.5 | ⊢ ( 𝜑  →  ( 𝐹 ‘ ∅ )  =  ∅ ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑦  ∈  { 𝑥  ∈  ( ( ω  ↑o  2o )  ↑m  𝑊 )  ∣  𝑥  finSupp  ∅ }  ↦  ( 𝐹  ∘  ( 𝑦  ∘  ◡ (  I   ↾  𝑊 ) ) ) )  =  ( 𝑦  ∈  { 𝑥  ∈  ( ( ω  ↑o  2o )  ↑m  𝑊 )  ∣  𝑥  finSupp  ∅ }  ↦  ( 𝐹  ∘  ( 𝑦  ∘  ◡ (  I   ↾  𝑊 ) ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( ( ( ω  CNF  𝑊 )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ( ω  ↑o  2o )  ↑m  𝑊 )  ∣  𝑥  finSupp  ∅ }  ↦  ( 𝐹  ∘  ( 𝑦  ∘  ◡ (  I   ↾  𝑊 ) ) ) ) )  ∘  ◡ ( ( ω  ↑o  2o )  CNF  𝑊 ) )  =  ( ( ( ω  CNF  𝑊 )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ( ω  ↑o  2o )  ↑m  𝑊 )  ∣  𝑥  finSupp  ∅ }  ↦  ( 𝐹  ∘  ( 𝑦  ∘  ◡ (  I   ↾  𝑊 ) ) ) ) )  ∘  ◡ ( ( ω  ↑o  2o )  CNF  𝑊 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑦  ∈  { 𝑥  ∈  ( ω  ↑m  ( 𝑊  ·o  2o ) )  ∣  𝑥  finSupp  ∅ }  ↦  ( (  I   ↾  ω )  ∘  ( 𝑦  ∘  ◡ ( ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) )  ∘  ◡ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) ) ) ) )  =  ( 𝑦  ∈  { 𝑥  ∈  ( ω  ↑m  ( 𝑊  ·o  2o ) )  ∣  𝑥  finSupp  ∅ }  ↦  ( (  I   ↾  ω )  ∘  ( 𝑦  ∘  ◡ ( ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) )  ∘  ◡ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) )  =  ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) )  =  ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) ) | 
						
							| 11 |  | eqid | ⊢ ( ( ( ω  CNF  ( 2o  ·o  𝑊 ) )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ω  ↑m  ( 𝑊  ·o  2o ) )  ∣  𝑥  finSupp  ∅ }  ↦  ( (  I   ↾  ω )  ∘  ( 𝑦  ∘  ◡ ( ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) )  ∘  ◡ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) ) ) ) ) )  ∘  ◡ ( ω  CNF  ( 𝑊  ·o  2o ) ) )  =  ( ( ( ω  CNF  ( 2o  ·o  𝑊 ) )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ω  ↑m  ( 𝑊  ·o  2o ) )  ∣  𝑥  finSupp  ∅ }  ↦  ( (  I   ↾  ω )  ∘  ( 𝑦  ∘  ◡ ( ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) )  ∘  ◡ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) ) ) ) ) )  ∘  ◡ ( ω  CNF  ( 𝑊  ·o  2o ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑥  ∈  ( ω  ↑o  𝑊 ) ,  𝑦  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( ω  ↑o  𝑊 )  ·o  𝑥 )  +o  𝑦 ) )  =  ( 𝑥  ∈  ( ω  ↑o  𝑊 ) ,  𝑦  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( ω  ↑o  𝑊 )  ·o  𝑥 )  +o  𝑦 ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) ,  ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 )  =  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) ,  ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) | 
						
							| 14 |  | eqid | ⊢ ( ◡ ( 𝑛 ‘ 𝑏 )  ∘  ( ( ( ( ( ( ω  CNF  𝑊 )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ( ω  ↑o  2o )  ↑m  𝑊 )  ∣  𝑥  finSupp  ∅ }  ↦  ( 𝐹  ∘  ( 𝑦  ∘  ◡ (  I   ↾  𝑊 ) ) ) ) )  ∘  ◡ ( ( ω  ↑o  2o )  CNF  𝑊 ) )  ∘  ( ( ( ω  CNF  ( 2o  ·o  𝑊 ) )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ω  ↑m  ( 𝑊  ·o  2o ) )  ∣  𝑥  finSupp  ∅ }  ↦  ( (  I   ↾  ω )  ∘  ( 𝑦  ∘  ◡ ( ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) )  ∘  ◡ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) ) ) ) ) )  ∘  ◡ ( ω  CNF  ( 𝑊  ·o  2o ) ) ) )  ∘  ( 𝑥  ∈  ( ω  ↑o  𝑊 ) ,  𝑦  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( ω  ↑o  𝑊 )  ·o  𝑥 )  +o  𝑦 ) ) )  ∘  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) ,  ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) ) )  =  ( ◡ ( 𝑛 ‘ 𝑏 )  ∘  ( ( ( ( ( ( ω  CNF  𝑊 )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ( ω  ↑o  2o )  ↑m  𝑊 )  ∣  𝑥  finSupp  ∅ }  ↦  ( 𝐹  ∘  ( 𝑦  ∘  ◡ (  I   ↾  𝑊 ) ) ) ) )  ∘  ◡ ( ( ω  ↑o  2o )  CNF  𝑊 ) )  ∘  ( ( ( ω  CNF  ( 2o  ·o  𝑊 ) )  ∘  ( 𝑦  ∈  { 𝑥  ∈  ( ω  ↑m  ( 𝑊  ·o  2o ) )  ∣  𝑥  finSupp  ∅ }  ↦  ( (  I   ↾  ω )  ∘  ( 𝑦  ∘  ◡ ( ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 2o  ·o  𝑤 )  +o  𝑧 ) )  ∘  ◡ ( 𝑧  ∈  2o ,  𝑤  ∈  𝑊  ↦  ( ( 𝑊  ·o  𝑧 )  +o  𝑤 ) ) ) ) ) ) )  ∘  ◡ ( ω  CNF  ( 𝑊  ·o  2o ) ) ) )  ∘  ( 𝑥  ∈  ( ω  ↑o  𝑊 ) ,  𝑦  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( ω  ↑o  𝑊 )  ·o  𝑥 )  +o  𝑦 ) ) )  ∘  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) ,  ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | infxpenc2lem2 | ⊢ ( 𝜑  →  ∃ 𝑔 ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ( 𝑔 ‘ 𝑏 ) : ( 𝑏  ×  𝑏 ) –1-1-onto→ 𝑏 ) ) |