Step |
Hyp |
Ref |
Expression |
1 |
|
infxpenc2.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
infxpenc2.2 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
3 |
|
infxpenc2.3 |
⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) |
4 |
|
infxpenc2.4 |
⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) |
5 |
|
infxpenc2.5 |
⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) |
6 |
|
eqid |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) |
7 |
|
eqid |
⊢ ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) = ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) |
8 |
|
eqid |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) |
9 |
|
eqid |
⊢ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) |
10 |
|
eqid |
⊢ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) |
11 |
|
eqid |
⊢ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) |
13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) |
14 |
|
eqid |
⊢ ( ◡ ( 𝑛 ‘ 𝑏 ) ∘ ( ( ( ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) ∘ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) ) ∘ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) ) ) = ( ◡ ( 𝑛 ‘ 𝑏 ) ∘ ( ( ( ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) ∘ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) ) ∘ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
infxpenc2lem2 |
⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |