Step |
Hyp |
Ref |
Expression |
1 |
|
leweon.1 |
⊢ 𝐿 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ) ∧ ( ( 1st ‘ 𝑥 ) ∈ ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) ∈ ( 2nd ‘ 𝑦 ) ) ) ) } |
2 |
|
r0weon.1 |
⊢ 𝑅 = { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) } |
3 |
|
infxpen.1 |
⊢ 𝑄 = ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) |
4 |
|
infxpen.2 |
⊢ ( 𝜑 ↔ ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) ) |
5 |
|
infxpen.3 |
⊢ 𝑀 = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) |
6 |
|
infxpen.4 |
⊢ 𝐽 = OrdIso ( 𝑄 , ( 𝑎 × 𝑎 ) ) |
7 |
|
sseq2 |
⊢ ( 𝑎 = 𝑚 → ( ω ⊆ 𝑎 ↔ ω ⊆ 𝑚 ) ) |
8 |
|
xpeq12 |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑎 = 𝑚 ) → ( 𝑎 × 𝑎 ) = ( 𝑚 × 𝑚 ) ) |
9 |
8
|
anidms |
⊢ ( 𝑎 = 𝑚 → ( 𝑎 × 𝑎 ) = ( 𝑚 × 𝑚 ) ) |
10 |
|
id |
⊢ ( 𝑎 = 𝑚 → 𝑎 = 𝑚 ) |
11 |
9 10
|
breq12d |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑎 × 𝑎 ) ≈ 𝑎 ↔ ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
12 |
7 11
|
imbi12d |
⊢ ( 𝑎 = 𝑚 → ( ( ω ⊆ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ↔ ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ) |
13 |
|
sseq2 |
⊢ ( 𝑎 = 𝐴 → ( ω ⊆ 𝑎 ↔ ω ⊆ 𝐴 ) ) |
14 |
|
xpeq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑎 = 𝐴 ) → ( 𝑎 × 𝑎 ) = ( 𝐴 × 𝐴 ) ) |
15 |
14
|
anidms |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 × 𝑎 ) = ( 𝐴 × 𝐴 ) ) |
16 |
|
id |
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) |
17 |
15 16
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 × 𝑎 ) ≈ 𝑎 ↔ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) ) |
18 |
13 17
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ω ⊆ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ↔ ( ω ⊆ 𝐴 → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) ) ) |
19 |
|
vex |
⊢ 𝑎 ∈ V |
20 |
19 19
|
xpex |
⊢ ( 𝑎 × 𝑎 ) ∈ V |
21 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → 𝑎 ∈ On ) |
22 |
4 21
|
sylbi |
⊢ ( 𝜑 → 𝑎 ∈ On ) |
23 |
|
onss |
⊢ ( 𝑎 ∈ On → 𝑎 ⊆ On ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑎 ⊆ On ) |
25 |
|
xpss12 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ⊆ On ) → ( 𝑎 × 𝑎 ) ⊆ ( On × On ) ) |
26 |
24 24 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑎 × 𝑎 ) ⊆ ( On × On ) ) |
27 |
1 2
|
r0weon |
⊢ ( 𝑅 We ( On × On ) ∧ 𝑅 Se ( On × On ) ) |
28 |
27
|
simpli |
⊢ 𝑅 We ( On × On ) |
29 |
|
wess |
⊢ ( ( 𝑎 × 𝑎 ) ⊆ ( On × On ) → ( 𝑅 We ( On × On ) → 𝑅 We ( 𝑎 × 𝑎 ) ) ) |
30 |
26 28 29
|
mpisyl |
⊢ ( 𝜑 → 𝑅 We ( 𝑎 × 𝑎 ) ) |
31 |
|
weinxp |
⊢ ( 𝑅 We ( 𝑎 × 𝑎 ) ↔ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) |
32 |
30 31
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) |
33 |
|
weeq1 |
⊢ ( 𝑄 = ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) → ( 𝑄 We ( 𝑎 × 𝑎 ) ↔ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) ) |
34 |
3 33
|
ax-mp |
⊢ ( 𝑄 We ( 𝑎 × 𝑎 ) ↔ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) |
35 |
32 34
|
sylibr |
⊢ ( 𝜑 → 𝑄 We ( 𝑎 × 𝑎 ) ) |
36 |
6
|
oiiso |
⊢ ( ( ( 𝑎 × 𝑎 ) ∈ V ∧ 𝑄 We ( 𝑎 × 𝑎 ) ) → 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) ) |
37 |
20 35 36
|
sylancr |
⊢ ( 𝜑 → 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) ) |
38 |
|
isof1o |
⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → 𝐽 : dom 𝐽 –1-1-onto→ ( 𝑎 × 𝑎 ) ) |
39 |
|
f1ocnv |
⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ ( 𝑎 × 𝑎 ) → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 ) |
40 |
|
f1of1 |
⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ) |
41 |
37 38 39 40
|
4syl |
⊢ ( 𝜑 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ) |
42 |
|
f1f1orn |
⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ ran ◡ 𝐽 ) |
43 |
20
|
f1oen |
⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ ran ◡ 𝐽 → ( 𝑎 × 𝑎 ) ≈ ran ◡ 𝐽 ) |
44 |
41 42 43
|
3syl |
⊢ ( 𝜑 → ( 𝑎 × 𝑎 ) ≈ ran ◡ 𝐽 ) |
45 |
|
f1ofn |
⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 → ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ) |
46 |
37 38 39 45
|
4syl |
⊢ ( 𝜑 → ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ) |
47 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) ) |
48 |
38 39 40
|
3syl |
⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ) |
49 |
|
cnvimass |
⊢ ( ◡ 𝑄 “ { 𝑤 } ) ⊆ dom 𝑄 |
50 |
|
inss2 |
⊢ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) ⊆ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) |
51 |
3 50
|
eqsstri |
⊢ 𝑄 ⊆ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) |
52 |
|
dmss |
⊢ ( 𝑄 ⊆ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) → dom 𝑄 ⊆ dom ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) |
53 |
51 52
|
ax-mp |
⊢ dom 𝑄 ⊆ dom ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) |
54 |
|
dmxpid |
⊢ dom ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) = ( 𝑎 × 𝑎 ) |
55 |
53 54
|
sseqtri |
⊢ dom 𝑄 ⊆ ( 𝑎 × 𝑎 ) |
56 |
49 55
|
sstri |
⊢ ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( 𝑎 × 𝑎 ) |
57 |
|
f1ores |
⊢ ( ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ∧ ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ↾ ( ◡ 𝑄 “ { 𝑤 } ) ) : ( ◡ 𝑄 “ { 𝑤 } ) –1-1-onto→ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) |
58 |
48 56 57
|
sylancl |
⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ↾ ( ◡ 𝑄 “ { 𝑤 } ) ) : ( ◡ 𝑄 “ { 𝑤 } ) –1-1-onto→ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) |
59 |
20 20
|
xpex |
⊢ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ∈ V |
60 |
59
|
inex2 |
⊢ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) ∈ V |
61 |
3 60
|
eqeltri |
⊢ 𝑄 ∈ V |
62 |
61
|
cnvex |
⊢ ◡ 𝑄 ∈ V |
63 |
62
|
imaex |
⊢ ( ◡ 𝑄 “ { 𝑤 } ) ∈ V |
64 |
63
|
f1oen |
⊢ ( ( ◡ 𝐽 ↾ ( ◡ 𝑄 “ { 𝑤 } ) ) : ( ◡ 𝑄 “ { 𝑤 } ) –1-1-onto→ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≈ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) |
65 |
47 58 64
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≈ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) |
66 |
|
sseqin2 |
⊢ ( ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( 𝑎 × 𝑎 ) ↔ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) = ( ◡ 𝑄 “ { 𝑤 } ) ) |
67 |
56 66
|
mpbi |
⊢ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) = ( ◡ 𝑄 “ { 𝑤 } ) |
68 |
67
|
imaeq2i |
⊢ ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) |
69 |
|
isocnv |
⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → ◡ 𝐽 Isom 𝑄 , E ( ( 𝑎 × 𝑎 ) , dom 𝐽 ) ) |
70 |
47 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ◡ 𝐽 Isom 𝑄 , E ( ( 𝑎 × 𝑎 ) , dom 𝐽 ) ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑤 ∈ ( 𝑎 × 𝑎 ) ) |
72 |
|
isoini |
⊢ ( ( ◡ 𝐽 Isom 𝑄 , E ( ( 𝑎 × 𝑎 ) , dom 𝐽 ) ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) ) |
73 |
70 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) ) |
74 |
|
fvex |
⊢ ( ◡ 𝐽 ‘ 𝑤 ) ∈ V |
75 |
74
|
epini |
⊢ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) = ( ◡ 𝐽 ‘ 𝑤 ) |
76 |
75
|
ineq2i |
⊢ ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) = ( dom 𝐽 ∩ ( ◡ 𝐽 ‘ 𝑤 ) ) |
77 |
6
|
oicl |
⊢ Ord dom 𝐽 |
78 |
|
f1of |
⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) ⟶ dom 𝐽 ) |
79 |
37 38 39 78
|
4syl |
⊢ ( 𝜑 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) ⟶ dom 𝐽 ) |
80 |
79
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ dom 𝐽 ) |
81 |
|
ordelss |
⊢ ( ( Ord dom 𝐽 ∧ ( ◡ 𝐽 ‘ 𝑤 ) ∈ dom 𝐽 ) → ( ◡ 𝐽 ‘ 𝑤 ) ⊆ dom 𝐽 ) |
82 |
77 80 81
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ⊆ dom 𝐽 ) |
83 |
|
sseqin2 |
⊢ ( ( ◡ 𝐽 ‘ 𝑤 ) ⊆ dom 𝐽 ↔ ( dom 𝐽 ∩ ( ◡ 𝐽 ‘ 𝑤 ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
84 |
82 83
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( dom 𝐽 ∩ ( ◡ 𝐽 ‘ 𝑤 ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
85 |
76 84
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
86 |
73 85
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
87 |
68 86
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
88 |
65 87
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≈ ( ◡ 𝐽 ‘ 𝑤 ) ) |
89 |
88
|
ensymd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ≈ ( ◡ 𝑄 “ { 𝑤 } ) ) |
90 |
|
fvex |
⊢ ( 1st ‘ 𝑤 ) ∈ V |
91 |
|
fvex |
⊢ ( 2nd ‘ 𝑤 ) ∈ V |
92 |
90 91
|
unex |
⊢ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ V |
93 |
5 92
|
eqeltri |
⊢ 𝑀 ∈ V |
94 |
93
|
sucex |
⊢ suc 𝑀 ∈ V |
95 |
94 94
|
xpex |
⊢ ( suc 𝑀 × suc 𝑀 ) ∈ V |
96 |
|
xpss |
⊢ ( 𝑎 × 𝑎 ) ⊆ ( V × V ) |
97 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) |
98 |
|
vex |
⊢ 𝑧 ∈ V |
99 |
98
|
eliniseg |
⊢ ( 𝑤 ∈ V → ( 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ↔ 𝑧 𝑄 𝑤 ) ) |
100 |
99
|
elv |
⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ↔ 𝑧 𝑄 𝑤 ) |
101 |
97 100
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 𝑄 𝑤 ) |
102 |
3
|
breqi |
⊢ ( 𝑧 𝑄 𝑤 ↔ 𝑧 ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) 𝑤 ) |
103 |
|
brin |
⊢ ( 𝑧 ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) 𝑤 ↔ ( 𝑧 𝑅 𝑤 ∧ 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ) ) |
104 |
102 103
|
bitri |
⊢ ( 𝑧 𝑄 𝑤 ↔ ( 𝑧 𝑅 𝑤 ∧ 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ) ) |
105 |
104
|
simprbi |
⊢ ( 𝑧 𝑄 𝑤 → 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ) |
106 |
|
brxp |
⊢ ( 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ↔ ( 𝑧 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) ) |
107 |
106
|
simplbi |
⊢ ( 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 → 𝑧 ∈ ( 𝑎 × 𝑎 ) ) |
108 |
101 105 107
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( 𝑎 × 𝑎 ) ) |
109 |
96 108
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( V × V ) ) |
110 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑎 ∈ On ) |
111 |
110
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑎 ∈ On ) |
112 |
|
xp1st |
⊢ ( 𝑧 ∈ ( 𝑎 × 𝑎 ) → ( 1st ‘ 𝑧 ) ∈ 𝑎 ) |
113 |
|
onelon |
⊢ ( ( 𝑎 ∈ On ∧ ( 1st ‘ 𝑧 ) ∈ 𝑎 ) → ( 1st ‘ 𝑧 ) ∈ On ) |
114 |
112 113
|
sylan2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑧 ∈ ( 𝑎 × 𝑎 ) ) → ( 1st ‘ 𝑧 ) ∈ On ) |
115 |
111 108 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 1st ‘ 𝑧 ) ∈ On ) |
116 |
|
eloni |
⊢ ( 𝑎 ∈ On → Ord 𝑎 ) |
117 |
|
elxp7 |
⊢ ( 𝑤 ∈ ( 𝑎 × 𝑎 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) ) ) |
118 |
117
|
simprbi |
⊢ ( 𝑤 ∈ ( 𝑎 × 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) ) |
119 |
|
ordunel |
⊢ ( ( Ord 𝑎 ∧ ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) |
120 |
119
|
3expib |
⊢ ( Ord 𝑎 → ( ( ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) ) |
121 |
116 118 120
|
syl2im |
⊢ ( 𝑎 ∈ On → ( 𝑤 ∈ ( 𝑎 × 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) ) |
122 |
110 71 121
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) |
123 |
5 122
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑀 ∈ 𝑎 ) |
124 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) |
125 |
4 124
|
sylbi |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) |
126 |
|
simprl |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ω ⊆ 𝑎 ) |
127 |
4 126
|
sylbi |
⊢ ( 𝜑 → ω ⊆ 𝑎 ) |
128 |
|
iscard |
⊢ ( ( card ‘ 𝑎 ) = 𝑎 ↔ ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) |
129 |
|
cardlim |
⊢ ( ω ⊆ ( card ‘ 𝑎 ) ↔ Lim ( card ‘ 𝑎 ) ) |
130 |
|
sseq2 |
⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ω ⊆ ( card ‘ 𝑎 ) ↔ ω ⊆ 𝑎 ) ) |
131 |
|
limeq |
⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( Lim ( card ‘ 𝑎 ) ↔ Lim 𝑎 ) ) |
132 |
130 131
|
bibi12d |
⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ( ω ⊆ ( card ‘ 𝑎 ) ↔ Lim ( card ‘ 𝑎 ) ) ↔ ( ω ⊆ 𝑎 ↔ Lim 𝑎 ) ) ) |
133 |
129 132
|
mpbii |
⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ω ⊆ 𝑎 ↔ Lim 𝑎 ) ) |
134 |
128 133
|
sylbir |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) → ( ω ⊆ 𝑎 ↔ Lim 𝑎 ) ) |
135 |
134
|
biimpa |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ∧ ω ⊆ 𝑎 ) → Lim 𝑎 ) |
136 |
22 125 127 135
|
syl21anc |
⊢ ( 𝜑 → Lim 𝑎 ) |
137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → Lim 𝑎 ) |
138 |
|
limsuc |
⊢ ( Lim 𝑎 → ( 𝑀 ∈ 𝑎 ↔ suc 𝑀 ∈ 𝑎 ) ) |
139 |
137 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( 𝑀 ∈ 𝑎 ↔ suc 𝑀 ∈ 𝑎 ) ) |
140 |
123 139
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → suc 𝑀 ∈ 𝑎 ) |
141 |
|
onelon |
⊢ ( ( 𝑎 ∈ On ∧ suc 𝑀 ∈ 𝑎 ) → suc 𝑀 ∈ On ) |
142 |
22 140 141
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → suc 𝑀 ∈ On ) |
143 |
142
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → suc 𝑀 ∈ On ) |
144 |
|
ssun1 |
⊢ ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) |
145 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) |
146 |
104
|
simplbi |
⊢ ( 𝑧 𝑄 𝑤 → 𝑧 𝑅 𝑤 ) |
147 |
|
df-br |
⊢ ( 𝑧 𝑅 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ 𝑅 ) |
148 |
2
|
eleq2i |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ 𝑅 ↔ 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) } ) |
149 |
|
opabidw |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) } ↔ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) ) |
150 |
147 148 149
|
3bitri |
⊢ ( 𝑧 𝑅 𝑤 ↔ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) ) |
151 |
150
|
simprbi |
⊢ ( 𝑧 𝑅 𝑤 → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) |
152 |
|
simpl |
⊢ ( ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) |
153 |
152
|
orim2i |
⊢ ( ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) ) |
154 |
151 153
|
syl |
⊢ ( 𝑧 𝑅 𝑤 → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) ) |
155 |
|
fvex |
⊢ ( 1st ‘ 𝑧 ) ∈ V |
156 |
|
fvex |
⊢ ( 2nd ‘ 𝑧 ) ∈ V |
157 |
155 156
|
unex |
⊢ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ V |
158 |
157
|
elsuc |
⊢ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ↔ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) ) |
159 |
154 158
|
sylibr |
⊢ ( 𝑧 𝑅 𝑤 → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) |
160 |
|
suceq |
⊢ ( 𝑀 = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) → suc 𝑀 = suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) |
161 |
5 160
|
ax-mp |
⊢ suc 𝑀 = suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) |
162 |
159 161
|
eleqtrrdi |
⊢ ( 𝑧 𝑅 𝑤 → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) |
163 |
101 146 162
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) |
164 |
|
ontr2 |
⊢ ( ( ( 1st ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) → ( ( ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) → ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ) ) |
165 |
164
|
imp |
⊢ ( ( ( ( 1st ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) ∧ ( ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) ) → ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ) |
166 |
115 143 145 163 165
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ) |
167 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( 𝑎 × 𝑎 ) → ( 2nd ‘ 𝑧 ) ∈ 𝑎 ) |
168 |
|
onelon |
⊢ ( ( 𝑎 ∈ On ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑎 ) → ( 2nd ‘ 𝑧 ) ∈ On ) |
169 |
167 168
|
sylan2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑧 ∈ ( 𝑎 × 𝑎 ) ) → ( 2nd ‘ 𝑧 ) ∈ On ) |
170 |
111 108 169
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 2nd ‘ 𝑧 ) ∈ On ) |
171 |
|
ssun2 |
⊢ ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) |
172 |
171
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) |
173 |
|
ontr2 |
⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) → ( ( ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) → ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) ) |
174 |
173
|
imp |
⊢ ( ( ( ( 2nd ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) ∧ ( ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) ) → ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) |
175 |
170 143 172 163 174
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) |
176 |
|
elxp7 |
⊢ ( 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ∧ ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) ) ) |
177 |
176
|
biimpri |
⊢ ( ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ∧ ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) ) → 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ) |
178 |
109 166 175 177
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ) |
179 |
178
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) → 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ) ) |
180 |
179
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( suc 𝑀 × suc 𝑀 ) ) |
181 |
|
ssdomg |
⊢ ( ( suc 𝑀 × suc 𝑀 ) ∈ V → ( ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( suc 𝑀 × suc 𝑀 ) → ( ◡ 𝑄 “ { 𝑤 } ) ≼ ( suc 𝑀 × suc 𝑀 ) ) ) |
182 |
95 180 181
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≼ ( suc 𝑀 × suc 𝑀 ) ) |
183 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ω ⊆ 𝑎 ) |
184 |
|
nnfi |
⊢ ( suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin ) |
185 |
|
xpfi |
⊢ ( ( suc 𝑀 ∈ Fin ∧ suc 𝑀 ∈ Fin ) → ( suc 𝑀 × suc 𝑀 ) ∈ Fin ) |
186 |
185
|
anidms |
⊢ ( suc 𝑀 ∈ Fin → ( suc 𝑀 × suc 𝑀 ) ∈ Fin ) |
187 |
|
isfinite |
⊢ ( ( suc 𝑀 × suc 𝑀 ) ∈ Fin ↔ ( suc 𝑀 × suc 𝑀 ) ≺ ω ) |
188 |
186 187
|
sylib |
⊢ ( suc 𝑀 ∈ Fin → ( suc 𝑀 × suc 𝑀 ) ≺ ω ) |
189 |
184 188
|
syl |
⊢ ( suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ ω ) |
190 |
|
ssdomg |
⊢ ( 𝑎 ∈ V → ( ω ⊆ 𝑎 → ω ≼ 𝑎 ) ) |
191 |
190
|
elv |
⊢ ( ω ⊆ 𝑎 → ω ≼ 𝑎 ) |
192 |
|
sdomdomtr |
⊢ ( ( ( suc 𝑀 × suc 𝑀 ) ≺ ω ∧ ω ≼ 𝑎 ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) |
193 |
189 191 192
|
syl2an |
⊢ ( ( suc 𝑀 ∈ ω ∧ ω ⊆ 𝑎 ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) |
194 |
193
|
expcom |
⊢ ( ω ⊆ 𝑎 → ( suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
195 |
183 194
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
196 |
|
breq1 |
⊢ ( 𝑚 = suc 𝑀 → ( 𝑚 ≺ 𝑎 ↔ suc 𝑀 ≺ 𝑎 ) ) |
197 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) |
198 |
196 197 140
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → suc 𝑀 ≺ 𝑎 ) |
199 |
|
omelon |
⊢ ω ∈ On |
200 |
|
ontri1 |
⊢ ( ( ω ∈ On ∧ suc 𝑀 ∈ On ) → ( ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω ) ) |
201 |
199 142 200
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω ) ) |
202 |
|
sseq2 |
⊢ ( 𝑚 = suc 𝑀 → ( ω ⊆ 𝑚 ↔ ω ⊆ suc 𝑀 ) ) |
203 |
|
xpeq12 |
⊢ ( ( 𝑚 = suc 𝑀 ∧ 𝑚 = suc 𝑀 ) → ( 𝑚 × 𝑚 ) = ( suc 𝑀 × suc 𝑀 ) ) |
204 |
203
|
anidms |
⊢ ( 𝑚 = suc 𝑀 → ( 𝑚 × 𝑚 ) = ( suc 𝑀 × suc 𝑀 ) ) |
205 |
|
id |
⊢ ( 𝑚 = suc 𝑀 → 𝑚 = suc 𝑀 ) |
206 |
204 205
|
breq12d |
⊢ ( 𝑚 = suc 𝑀 → ( ( 𝑚 × 𝑚 ) ≈ 𝑚 ↔ ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) |
207 |
202 206
|
imbi12d |
⊢ ( 𝑚 = suc 𝑀 → ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ↔ ( ω ⊆ suc 𝑀 → ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) ) |
208 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
209 |
4 208
|
sylbi |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
210 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
211 |
207 210 140
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ω ⊆ suc 𝑀 → ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) |
212 |
201 211
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ¬ suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) |
213 |
|
ensdomtr |
⊢ ( ( ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ∧ suc 𝑀 ≺ 𝑎 ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) |
214 |
213
|
expcom |
⊢ ( suc 𝑀 ≺ 𝑎 → ( ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
215 |
198 212 214
|
sylsyld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ¬ suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
216 |
195 215
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) |
217 |
|
domsdomtr |
⊢ ( ( ( ◡ 𝑄 “ { 𝑤 } ) ≼ ( suc 𝑀 × suc 𝑀 ) ∧ ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) → ( ◡ 𝑄 “ { 𝑤 } ) ≺ 𝑎 ) |
218 |
182 216 217
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≺ 𝑎 ) |
219 |
|
ensdomtr |
⊢ ( ( ( ◡ 𝐽 ‘ 𝑤 ) ≈ ( ◡ 𝑄 “ { 𝑤 } ) ∧ ( ◡ 𝑄 “ { 𝑤 } ) ≺ 𝑎 ) → ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ) |
220 |
89 218 219
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ) |
221 |
|
ordelon |
⊢ ( ( Ord dom 𝐽 ∧ ( ◡ 𝐽 ‘ 𝑤 ) ∈ dom 𝐽 ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ On ) |
222 |
77 80 221
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ On ) |
223 |
|
onenon |
⊢ ( 𝑎 ∈ On → 𝑎 ∈ dom card ) |
224 |
110 223
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑎 ∈ dom card ) |
225 |
|
cardsdomel |
⊢ ( ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ On ∧ 𝑎 ∈ dom card ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ) ) |
226 |
222 224 225
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ) ) |
227 |
220 226
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ) |
228 |
|
eleq2 |
⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) ) |
229 |
128 228
|
sylbir |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) ) |
230 |
22 197 229
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) ) |
231 |
227 230
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) |
232 |
231
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝑎 × 𝑎 ) ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) |
233 |
|
fnfvrnss |
⊢ ( ( ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ∧ ∀ 𝑤 ∈ ( 𝑎 × 𝑎 ) ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) → ran ◡ 𝐽 ⊆ 𝑎 ) |
234 |
|
ssdomg |
⊢ ( 𝑎 ∈ V → ( ran ◡ 𝐽 ⊆ 𝑎 → ran ◡ 𝐽 ≼ 𝑎 ) ) |
235 |
19 233 234
|
mpsyl |
⊢ ( ( ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ∧ ∀ 𝑤 ∈ ( 𝑎 × 𝑎 ) ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) → ran ◡ 𝐽 ≼ 𝑎 ) |
236 |
46 232 235
|
syl2anc |
⊢ ( 𝜑 → ran ◡ 𝐽 ≼ 𝑎 ) |
237 |
|
endomtr |
⊢ ( ( ( 𝑎 × 𝑎 ) ≈ ran ◡ 𝐽 ∧ ran ◡ 𝐽 ≼ 𝑎 ) → ( 𝑎 × 𝑎 ) ≼ 𝑎 ) |
238 |
44 236 237
|
syl2anc |
⊢ ( 𝜑 → ( 𝑎 × 𝑎 ) ≼ 𝑎 ) |
239 |
4 238
|
sylbir |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≼ 𝑎 ) |
240 |
|
df1o2 |
⊢ 1o = { ∅ } |
241 |
|
1onn |
⊢ 1o ∈ ω |
242 |
240 241
|
eqeltrri |
⊢ { ∅ } ∈ ω |
243 |
|
nnsdom |
⊢ ( { ∅ } ∈ ω → { ∅ } ≺ ω ) |
244 |
|
sdomdom |
⊢ ( { ∅ } ≺ ω → { ∅ } ≼ ω ) |
245 |
242 243 244
|
mp2b |
⊢ { ∅ } ≼ ω |
246 |
|
domtr |
⊢ ( ( { ∅ } ≼ ω ∧ ω ≼ 𝑎 ) → { ∅ } ≼ 𝑎 ) |
247 |
245 191 246
|
sylancr |
⊢ ( ω ⊆ 𝑎 → { ∅ } ≼ 𝑎 ) |
248 |
|
0ex |
⊢ ∅ ∈ V |
249 |
19 248
|
xpsnen |
⊢ ( 𝑎 × { ∅ } ) ≈ 𝑎 |
250 |
249
|
ensymi |
⊢ 𝑎 ≈ ( 𝑎 × { ∅ } ) |
251 |
19
|
xpdom2 |
⊢ ( { ∅ } ≼ 𝑎 → ( 𝑎 × { ∅ } ) ≼ ( 𝑎 × 𝑎 ) ) |
252 |
|
endomtr |
⊢ ( ( 𝑎 ≈ ( 𝑎 × { ∅ } ) ∧ ( 𝑎 × { ∅ } ) ≼ ( 𝑎 × 𝑎 ) ) → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) |
253 |
250 251 252
|
sylancr |
⊢ ( { ∅ } ≼ 𝑎 → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) |
254 |
247 253
|
syl |
⊢ ( ω ⊆ 𝑎 → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) |
255 |
254
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) |
256 |
|
sbth |
⊢ ( ( ( 𝑎 × 𝑎 ) ≼ 𝑎 ∧ 𝑎 ≼ ( 𝑎 × 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
257 |
239 255 256
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
258 |
257
|
expr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ω ⊆ 𝑎 ) → ( ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
259 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
260 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → 𝑎 ∈ On ) |
261 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) |
262 |
|
rexnal |
⊢ ( ∃ 𝑚 ∈ 𝑎 ¬ 𝑚 ≺ 𝑎 ↔ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) |
263 |
|
onelss |
⊢ ( 𝑎 ∈ On → ( 𝑚 ∈ 𝑎 → 𝑚 ⊆ 𝑎 ) ) |
264 |
|
ssdomg |
⊢ ( 𝑎 ∈ On → ( 𝑚 ⊆ 𝑎 → 𝑚 ≼ 𝑎 ) ) |
265 |
263 264
|
syld |
⊢ ( 𝑎 ∈ On → ( 𝑚 ∈ 𝑎 → 𝑚 ≼ 𝑎 ) ) |
266 |
|
bren2 |
⊢ ( 𝑚 ≈ 𝑎 ↔ ( 𝑚 ≼ 𝑎 ∧ ¬ 𝑚 ≺ 𝑎 ) ) |
267 |
266
|
simplbi2 |
⊢ ( 𝑚 ≼ 𝑎 → ( ¬ 𝑚 ≺ 𝑎 → 𝑚 ≈ 𝑎 ) ) |
268 |
265 267
|
syl6 |
⊢ ( 𝑎 ∈ On → ( 𝑚 ∈ 𝑎 → ( ¬ 𝑚 ≺ 𝑎 → 𝑚 ≈ 𝑎 ) ) ) |
269 |
268
|
reximdvai |
⊢ ( 𝑎 ∈ On → ( ∃ 𝑚 ∈ 𝑎 ¬ 𝑚 ≺ 𝑎 → ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) ) |
270 |
262 269
|
syl5bir |
⊢ ( 𝑎 ∈ On → ( ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) ) |
271 |
260 261 270
|
sylc |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) |
272 |
|
r19.29 |
⊢ ( ( ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) → ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) |
273 |
259 271 272
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) |
274 |
|
simprl |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ω ⊆ 𝑎 ) |
275 |
|
onelon |
⊢ ( ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) → 𝑚 ∈ On ) |
276 |
|
ensym |
⊢ ( 𝑚 ≈ 𝑎 → 𝑎 ≈ 𝑚 ) |
277 |
|
domentr |
⊢ ( ( ω ≼ 𝑎 ∧ 𝑎 ≈ 𝑚 ) → ω ≼ 𝑚 ) |
278 |
191 276 277
|
syl2an |
⊢ ( ( ω ⊆ 𝑎 ∧ 𝑚 ≈ 𝑎 ) → ω ≼ 𝑚 ) |
279 |
|
domnsym |
⊢ ( ω ≼ 𝑚 → ¬ 𝑚 ≺ ω ) |
280 |
|
nnsdom |
⊢ ( 𝑚 ∈ ω → 𝑚 ≺ ω ) |
281 |
279 280
|
nsyl |
⊢ ( ω ≼ 𝑚 → ¬ 𝑚 ∈ ω ) |
282 |
|
ontri1 |
⊢ ( ( ω ∈ On ∧ 𝑚 ∈ On ) → ( ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω ) ) |
283 |
199 282
|
mpan |
⊢ ( 𝑚 ∈ On → ( ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω ) ) |
284 |
281 283
|
syl5ibr |
⊢ ( 𝑚 ∈ On → ( ω ≼ 𝑚 → ω ⊆ 𝑚 ) ) |
285 |
275 278 284
|
syl2im |
⊢ ( ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) → ( ( ω ⊆ 𝑎 ∧ 𝑚 ≈ 𝑎 ) → ω ⊆ 𝑚 ) ) |
286 |
285
|
expd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) → ( ω ⊆ 𝑎 → ( 𝑚 ≈ 𝑎 → ω ⊆ 𝑚 ) ) ) |
287 |
286
|
impcom |
⊢ ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) → ( 𝑚 ≈ 𝑎 → ω ⊆ 𝑚 ) ) |
288 |
287
|
imim1d |
⊢ ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) → ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( 𝑚 ≈ 𝑎 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ) |
289 |
288
|
imp32 |
⊢ ( ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) ∧ ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) |
290 |
|
entr |
⊢ ( ( ( 𝑚 × 𝑚 ) ≈ 𝑚 ∧ 𝑚 ≈ 𝑎 ) → ( 𝑚 × 𝑚 ) ≈ 𝑎 ) |
291 |
290
|
ancoms |
⊢ ( ( 𝑚 ≈ 𝑎 ∧ ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( 𝑚 × 𝑚 ) ≈ 𝑎 ) |
292 |
|
xpen |
⊢ ( ( 𝑎 ≈ 𝑚 ∧ 𝑎 ≈ 𝑚 ) → ( 𝑎 × 𝑎 ) ≈ ( 𝑚 × 𝑚 ) ) |
293 |
292
|
anidms |
⊢ ( 𝑎 ≈ 𝑚 → ( 𝑎 × 𝑎 ) ≈ ( 𝑚 × 𝑚 ) ) |
294 |
|
entr |
⊢ ( ( ( 𝑎 × 𝑎 ) ≈ ( 𝑚 × 𝑚 ) ∧ ( 𝑚 × 𝑚 ) ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
295 |
293 294
|
sylan |
⊢ ( ( 𝑎 ≈ 𝑚 ∧ ( 𝑚 × 𝑚 ) ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
296 |
276 291 295
|
syl2an2r |
⊢ ( ( 𝑚 ≈ 𝑎 ∧ ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
297 |
296
|
ex |
⊢ ( 𝑚 ≈ 𝑎 → ( ( 𝑚 × 𝑚 ) ≈ 𝑚 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
298 |
297
|
ad2antll |
⊢ ( ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) ∧ ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) → ( ( 𝑚 × 𝑚 ) ≈ 𝑚 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
299 |
289 298
|
mpd |
⊢ ( ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) ∧ ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
300 |
299
|
ex |
⊢ ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) → ( ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
301 |
300
|
expr |
⊢ ( ( ω ⊆ 𝑎 ∧ 𝑎 ∈ On ) → ( 𝑚 ∈ 𝑎 → ( ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) ) |
302 |
301
|
rexlimdv |
⊢ ( ( ω ⊆ 𝑎 ∧ 𝑎 ∈ On ) → ( ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
303 |
274 260 302
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
304 |
273 303
|
mpd |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
305 |
304
|
expr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ω ⊆ 𝑎 ) → ( ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
306 |
258 305
|
pm2.61d |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ω ⊆ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
307 |
306
|
exp31 |
⊢ ( 𝑎 ∈ On → ( ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( ω ⊆ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) ) |
308 |
12 18 307
|
tfis3 |
⊢ ( 𝐴 ∈ On → ( ω ⊆ 𝐴 → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) ) |
309 |
308
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |