Metamath Proof Explorer
Description: The infimum of an arbitrary set of extended reals is an extended real.
(Contributed by NM, 19-Jan-2006) (Revised by AV, 5-Sep-2020)
|
|
Ref |
Expression |
|
Assertion |
infxrcl |
⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrltso |
⊢ < Or ℝ* |
2 |
1
|
a1i |
⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
3 |
|
xrinfmss |
⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
4 |
2 3
|
infcl |
⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |