Metamath Proof Explorer


Theorem infxrgelb

Description: The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infxrgelb ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝐵𝑥 ) )

Proof

Step Hyp Ref Expression
1 xrltso < Or ℝ*
2 1 a1i ( 𝐴 ⊆ ℝ* → < Or ℝ* )
3 xrinfmss ( 𝐴 ⊆ ℝ* → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑥𝐴 𝑥 < 𝑦 ) ) )
4 id ( 𝐴 ⊆ ℝ*𝐴 ⊆ ℝ* )
5 2 3 4 infglbb ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ∃ 𝑥𝐴 𝑥 < 𝐵 ) )
6 5 notbid ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ¬ ∃ 𝑥𝐴 𝑥 < 𝐵 ) )
7 ralnex ( ∀ 𝑥𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃ 𝑥𝐴 𝑥 < 𝐵 )
8 6 7 bitr4di ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ∀ 𝑥𝐴 ¬ 𝑥 < 𝐵 ) )
9 id ( 𝐵 ∈ ℝ*𝐵 ∈ ℝ* )
10 infxrcl ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
11 xrlenlt ( ( 𝐵 ∈ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ) )
12 9 10 11 syl2anr ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ) )
13 simplr ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ℝ* )
14 simpl ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → 𝐴 ⊆ ℝ* )
15 14 sselda ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ* )
16 13 15 xrlenltd ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ 𝑥𝐴 ) → ( 𝐵𝑥 ↔ ¬ 𝑥 < 𝐵 ) )
17 16 ralbidva ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( ∀ 𝑥𝐴 𝐵𝑥 ↔ ∀ 𝑥𝐴 ¬ 𝑥 < 𝐵 ) )
18 8 12 17 3bitr4d ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝐵𝑥 ) )