| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrltso |
⊢ < Or ℝ* |
| 2 |
1
|
a1i |
⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
| 3 |
|
xrinfmss |
⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 4 |
|
id |
⊢ ( 𝐴 ⊆ ℝ* → 𝐴 ⊆ ℝ* ) |
| 5 |
2 3 4
|
infglbb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) ) |
| 6 |
5
|
notbid |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) ) |
| 7 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) |
| 8 |
6 7
|
bitr4di |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ) ) |
| 9 |
|
id |
⊢ ( 𝐵 ∈ ℝ* → 𝐵 ∈ ℝ* ) |
| 10 |
|
infxrcl |
⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 11 |
|
xrlenlt |
⊢ ( ( 𝐵 ∈ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ) ) |
| 12 |
9 10 11
|
syl2anr |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ) ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 14 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ⊆ ℝ* ) |
| 15 |
14
|
sselda |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 16 |
13 15
|
xrlenltd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵 ) ) |
| 17 |
16
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ) ) |
| 18 |
8 12 17
|
3bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |