Metamath Proof Explorer


Theorem infxrgelbrnmpt

Description: The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infxrgelbrnmpt.x 𝑥 𝜑
infxrgelbrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
infxrgelbrnmpt.c ( 𝜑𝐶 ∈ ℝ* )
Assertion infxrgelbrnmpt ( 𝜑 → ( 𝐶 ≤ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 infxrgelbrnmpt.x 𝑥 𝜑
2 infxrgelbrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
3 infxrgelbrnmpt.c ( 𝜑𝐶 ∈ ℝ* )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 1 4 2 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ* )
6 infxrgelb ( ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ*𝐶 ∈ ℝ* ) → ( 𝐶 ≤ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) )
7 5 3 6 syl2anc ( 𝜑 → ( 𝐶 ≤ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) )
8 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
9 8 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
10 nfv 𝑥 𝐶𝑧
11 9 10 nfralw 𝑥𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧
12 1 11 nfan 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 )
13 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
14 4 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ* ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
15 13 2 14 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
16 15 adantlr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
17 simplr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) ∧ 𝑥𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 )
18 breq2 ( 𝑧 = 𝐵 → ( 𝐶𝑧𝐶𝐵 ) )
19 18 rspcva ( ( 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) → 𝐶𝐵 )
20 16 17 19 syl2anc ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) ∧ 𝑥𝐴 ) → 𝐶𝐵 )
21 20 ex ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) → ( 𝑥𝐴𝐶𝐵 ) )
22 12 21 ralrimi ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ) → ∀ 𝑥𝐴 𝐶𝐵 )
23 vex 𝑧 ∈ V
24 4 elrnmpt ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 ) )
25 23 24 ax-mp ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 )
26 25 biimpi ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) → ∃ 𝑥𝐴 𝑧 = 𝐵 )
27 26 adantl ( ( ∀ 𝑥𝐴 𝐶𝐵𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 𝑧 = 𝐵 )
28 nfra1 𝑥𝑥𝐴 𝐶𝐵
29 rspa ( ( ∀ 𝑥𝐴 𝐶𝐵𝑥𝐴 ) → 𝐶𝐵 )
30 18 biimprcd ( 𝐶𝐵 → ( 𝑧 = 𝐵𝐶𝑧 ) )
31 29 30 syl ( ( ∀ 𝑥𝐴 𝐶𝐵𝑥𝐴 ) → ( 𝑧 = 𝐵𝐶𝑧 ) )
32 31 ex ( ∀ 𝑥𝐴 𝐶𝐵 → ( 𝑥𝐴 → ( 𝑧 = 𝐵𝐶𝑧 ) ) )
33 28 10 32 rexlimd ( ∀ 𝑥𝐴 𝐶𝐵 → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝐶𝑧 ) )
34 33 adantr ( ( ∀ 𝑥𝐴 𝐶𝐵𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝐶𝑧 ) )
35 27 34 mpd ( ( ∀ 𝑥𝐴 𝐶𝐵𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝐶𝑧 )
36 35 ralrimiva ( ∀ 𝑥𝐴 𝐶𝐵 → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 )
37 36 adantl ( ( 𝜑 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 )
38 22 37 impbida ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶𝑧 ↔ ∀ 𝑥𝐴 𝐶𝐵 ) )
39 7 38 bitrd ( 𝜑 → ( 𝐶 ≤ inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝐶𝐵 ) )