Metamath Proof Explorer


Theorem infxrlb

Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infxrlb ( ( 𝐴 ⊆ ℝ*𝐵𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝐵 )

Proof

Step Hyp Ref Expression
1 infxrcl ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
2 1 adantr ( ( 𝐴 ⊆ ℝ*𝐵𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
3 ssel2 ( ( 𝐴 ⊆ ℝ*𝐵𝐴 ) → 𝐵 ∈ ℝ* )
4 xrltso < Or ℝ*
5 4 a1i ( 𝐴 ⊆ ℝ* → < Or ℝ* )
6 xrinfmss ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
7 5 6 inflb ( 𝐴 ⊆ ℝ* → ( 𝐵𝐴 → ¬ 𝐵 < inf ( 𝐴 , ℝ* , < ) ) )
8 7 imp ( ( 𝐴 ⊆ ℝ*𝐵𝐴 ) → ¬ 𝐵 < inf ( 𝐴 , ℝ* , < ) )
9 2 3 8 xrnltled ( ( 𝐴 ⊆ ℝ*𝐵𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝐵 )