Metamath Proof Explorer


Theorem infxrlbrnmpt2

Description: A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infxrlbrnmpt2.x 𝑥 𝜑
infxrlbrnmpt2.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
infxrlbrnmpt2.c ( 𝜑𝐶𝐴 )
infxrlbrnmpt2.d ( 𝜑𝐷 ∈ ℝ* )
infxrlbrnmpt2.e ( 𝑥 = 𝐶𝐵 = 𝐷 )
Assertion infxrlbrnmpt2 ( 𝜑 → inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐷 )

Proof

Step Hyp Ref Expression
1 infxrlbrnmpt2.x 𝑥 𝜑
2 infxrlbrnmpt2.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
3 infxrlbrnmpt2.c ( 𝜑𝐶𝐴 )
4 infxrlbrnmpt2.d ( 𝜑𝐷 ∈ ℝ* )
5 infxrlbrnmpt2.e ( 𝑥 = 𝐶𝐵 = 𝐷 )
6 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
7 1 6 2 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ* )
8 6 5 elrnmpt1s ( ( 𝐶𝐴𝐷 ∈ ℝ* ) → 𝐷 ∈ ran ( 𝑥𝐴𝐵 ) )
9 3 4 8 syl2anc ( 𝜑𝐷 ∈ ran ( 𝑥𝐴𝐵 ) )
10 infxrlb ( ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ*𝐷 ∈ ran ( 𝑥𝐴𝐵 ) ) → inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐷 )
11 7 9 10 syl2anc ( 𝜑 → inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐷 )