Metamath Proof Explorer


Theorem infxrlesupxr

Description: The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infxrlesupxr.1 ( 𝜑𝐴 ⊆ ℝ* )
infxrlesupxr.2 ( 𝜑𝐴 ≠ ∅ )
Assertion infxrlesupxr ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 infxrlesupxr.1 ( 𝜑𝐴 ⊆ ℝ* )
2 infxrlesupxr.2 ( 𝜑𝐴 ≠ ∅ )
3 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
4 3 biimpi ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥𝐴 )
5 2 4 syl ( 𝜑 → ∃ 𝑥 𝑥𝐴 )
6 1 infxrcld ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
7 6 adantr ( ( 𝜑𝑥𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
8 1 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ* )
9 1 supxrcld ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
10 9 adantr ( ( 𝜑𝑥𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
11 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ℝ* )
12 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
13 infxrlb ( ( 𝐴 ⊆ ℝ*𝑥𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 )
14 11 12 13 syl2anc ( ( 𝜑𝑥𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 )
15 eqid sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ* , < )
16 11 12 15 supxrubd ( ( 𝜑𝑥𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) )
17 7 8 10 14 16 xrletrd ( ( 𝜑𝑥𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) )
18 17 ex ( 𝜑 → ( 𝑥𝐴 → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) )
19 18 exlimdv ( 𝜑 → ( ∃ 𝑥 𝑥𝐴 → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) )
20 5 19 mpd ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) )