| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							infxrlesupxr.1 | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℝ* )  | 
						
						
							| 2 | 
							
								
							 | 
							infxrlesupxr.2 | 
							⊢ ( 𝜑  →  𝐴  ≠  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpi | 
							⊢ ( 𝐴  ≠  ∅  →  ∃ 𝑥 𝑥  ∈  𝐴 )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑥 𝑥  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								1
							 | 
							infxrcld | 
							⊢ ( 𝜑  →  inf ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  inf ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 8 | 
							
								1
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ* )  | 
						
						
							| 9 | 
							
								1
							 | 
							supxrcld | 
							⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  sup ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 11 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  ℝ* )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							infxrlb | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  𝐴 )  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  𝑥 )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  𝑥 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ sup ( 𝐴 ,  ℝ* ,   <  )  =  sup ( 𝐴 ,  ℝ* ,   <  )  | 
						
						
							| 16 | 
							
								11 12 15
							 | 
							supxrubd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≤  sup ( 𝐴 ,  ℝ* ,   <  ) )  | 
						
						
							| 17 | 
							
								7 8 10 14 16
							 | 
							xrletrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  sup ( 𝐴 ,  ℝ* ,   <  ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  sup ( 𝐴 ,  ℝ* ,   <  ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							exlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑥 𝑥  ∈  𝐴  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  sup ( 𝐴 ,  ℝ* ,   <  ) ) )  | 
						
						
							| 20 | 
							
								5 19
							 | 
							mpd | 
							⊢ ( 𝜑  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  sup ( 𝐴 ,  ℝ* ,   <  ) )  |