Metamath Proof Explorer


Theorem infxrmnf

Description: The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Assertion infxrmnf ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) = -∞ )

Proof

Step Hyp Ref Expression
1 infxrlb ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ -∞ )
2 infxrcl ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
3 2 adantr ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
4 xlemnf ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( inf ( 𝐴 , ℝ* , < ) ≤ -∞ ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) )
5 3 4 syl ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ -∞ ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) )
6 1 5 mpbid ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) = -∞ )