Description: The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018) (Revised by AV, 28-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | infxrmnf | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) = -∞ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrlb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ -∞ ) | |
2 | infxrcl | ⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
3 | 2 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
4 | xlemnf | ⊢ ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( inf ( 𝐴 , ℝ* , < ) ≤ -∞ ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) ) | |
5 | 3 4 | syl | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ -∞ ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) ) |
6 | 1 5 | mpbid | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) = -∞ ) |