Step |
Hyp |
Ref |
Expression |
1 |
|
ssdifss |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 ∖ { +∞ } ) ⊆ ℝ* ) |
2 |
|
infxrpnf |
⊢ ( ( 𝐴 ∖ { +∞ } ) ⊆ ℝ* → inf ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) , ℝ* , < ) = inf ( ( 𝐴 ∖ { +∞ } ) , ℝ* , < ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ⊆ ℝ* → inf ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) , ℝ* , < ) = inf ( ( 𝐴 ∖ { +∞ } ) , ℝ* , < ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → inf ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) , ℝ* , < ) = inf ( ( 𝐴 ∖ { +∞ } ) , ℝ* , < ) ) |
5 |
|
difsnid |
⊢ ( +∞ ∈ 𝐴 → ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) = 𝐴 ) |
6 |
5
|
infeq1d |
⊢ ( +∞ ∈ 𝐴 → inf ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) , ℝ* , < ) = inf ( 𝐴 , ℝ* , < ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → inf ( ( ( 𝐴 ∖ { +∞ } ) ∪ { +∞ } ) , ℝ* , < ) = inf ( 𝐴 , ℝ* , < ) ) |
8 |
4 7
|
eqtr3d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → inf ( ( 𝐴 ∖ { +∞ } ) , ℝ* , < ) = inf ( 𝐴 , ℝ* , < ) ) |
9 |
|
difsn |
⊢ ( ¬ +∞ ∈ 𝐴 → ( 𝐴 ∖ { +∞ } ) = 𝐴 ) |
10 |
9
|
infeq1d |
⊢ ( ¬ +∞ ∈ 𝐴 → inf ( ( 𝐴 ∖ { +∞ } ) , ℝ* , < ) = inf ( 𝐴 , ℝ* , < ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ¬ +∞ ∈ 𝐴 ) → inf ( ( 𝐴 ∖ { +∞ } ) , ℝ* , < ) = inf ( 𝐴 , ℝ* , < ) ) |
12 |
8 11
|
pm2.61dan |
⊢ ( 𝐴 ⊆ ℝ* → inf ( ( 𝐴 ∖ { +∞ } ) , ℝ* , < ) = inf ( 𝐴 , ℝ* , < ) ) |