Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) |
2 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
3 |
1 2
|
sstrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ* ) |
4 |
|
infxrcl |
⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
6 |
|
infrecl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ ) |
7 |
6
|
rexrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ* ) |
8 |
5
|
xrleidd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
9 |
|
infxrgelb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) |
10 |
3 5 9
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) |
11 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ≠ ∅ ) |
12 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
14 |
5
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
15 |
1
|
sselda |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
16 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
17 |
16
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ ∈ ℝ* ) |
18 |
6
|
mnfltd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ < inf ( 𝐴 , ℝ , < ) ) |
19 |
6
|
leidd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ) |
20 |
|
infregelb |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) |
21 |
6 20
|
mpdan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) |
22 |
|
infxrgelb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ* ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) |
23 |
3 7 22
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) |
24 |
21 23
|
bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) ) |
25 |
19 24
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
26 |
17 7 5 18 25
|
xrltletrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ < inf ( 𝐴 , ℝ* , < ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ < inf ( 𝐴 , ℝ* , < ) ) |
28 |
|
infxrlb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑧 ) |
29 |
3 28
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑧 ) |
30 |
|
xrre |
⊢ ( ( ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ 𝑧 ∈ ℝ ) ∧ ( -∞ < inf ( 𝐴 , ℝ* , < ) ∧ inf ( 𝐴 , ℝ* , < ) ≤ 𝑧 ) ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
31 |
14 15 27 29 30
|
syl22anc |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
32 |
13 31
|
exlimddv |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
33 |
|
infregelb |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) |
34 |
32 33
|
mpdan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) ) |
35 |
10 34
|
bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ) ) |
36 |
8 35
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ , < ) ) |
37 |
5 7 36 25
|
xrletrid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) ) |