Description: The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | infxrrefi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℝ ) | |
2 | simp3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
3 | fiminre2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) | |
4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
5 | infxrre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) ) | |
6 | 1 2 4 5 | syl3anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) ) |