Metamath Proof Explorer


Theorem infxrrefi

Description: The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion infxrrefi ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℝ )
2 simp3 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ )
3 fiminre2 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )
4 3 3adant3 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )
5 infxrre ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) )
6 1 2 4 5 syl3anc ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , ℝ* , < ) = inf ( 𝐴 , ℝ , < ) )