Metamath Proof Explorer


Theorem infxrss

Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 13-Sep-2020)

Ref Expression
Assertion infxrss ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → 𝐵 ⊆ ℝ* )
2 simpl ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → 𝐴𝐵 )
3 2 sselda ( ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → 𝑥𝐵 )
4 infxrlb ( ( 𝐵 ⊆ ℝ*𝑥𝐵 ) → inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 )
5 1 3 4 syl2anc ( ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 )
6 5 ralrimiva ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → ∀ 𝑥𝐴 inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 )
7 sstr ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → 𝐴 ⊆ ℝ* )
8 infxrcl ( 𝐵 ⊆ ℝ* → inf ( 𝐵 , ℝ* , < ) ∈ ℝ* )
9 8 adantl ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → inf ( 𝐵 , ℝ* , < ) ∈ ℝ* )
10 infxrgelb ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐵 , ℝ* , < ) ∈ ℝ* ) → ( inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥𝐴 inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 ) )
11 7 9 10 syl2anc ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → ( inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥𝐴 inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 ) )
12 6 11 mpbird ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) )