| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							infxrunb3rnmpt.1 | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							infxrunb3rnmpt.2 | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							infxrunb3rnmpt.3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 4 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 5 | 
							
								4
							 | 
							nfrn | 
							⊢ Ⅎ 𝑥 ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑧  ≤  𝑦  | 
						
						
							| 7 | 
							
								5 6
							 | 
							nfrexw | 
							⊢ Ⅎ 𝑥 ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 10 | 
							
								9
							 | 
							elrnmpt1 | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ℝ* )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 11 | 
							
								8 3 10
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝐵  ≤  𝑦 )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝐵  ≤  𝑦 )  →  𝐵  ≤  𝑦 )  | 
						
						
							| 14 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ≤  𝑦  ↔  𝐵  ≤  𝑦 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rspcev | 
							⊢ ( ( 𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∧  𝐵  ≤  𝑦 )  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 )  | 
						
						
							| 16 | 
							
								12 13 15
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝐵  ≤  𝑦 )  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 )  | 
						
						
							| 17 | 
							
								16
							 | 
							3exp | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝐵  ≤  𝑦  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 ) ) )  | 
						
						
							| 18 | 
							
								1 7 17
							 | 
							rexlimd | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  | 
						
						
							| 20 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 21 | 
							
								9
							 | 
							elrnmpt | 
							⊢ ( 𝑧  ∈  V  →  ( 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							ax-mp | 
							⊢ ( 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵 )  | 
						
						
							| 23 | 
							
								22
							 | 
							biimpi | 
							⊢ ( 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵 )  | 
						
						
							| 24 | 
							
								14
							 | 
							biimpcd | 
							⊢ ( 𝑧  ≤  𝑦  →  ( 𝑧  =  𝐵  →  𝐵  ≤  𝑦 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							a1d | 
							⊢ ( 𝑧  ≤  𝑦  →  ( 𝑥  ∈  𝐴  →  ( 𝑧  =  𝐵  →  𝐵  ≤  𝑦 ) ) )  | 
						
						
							| 26 | 
							
								6 25
							 | 
							reximdai | 
							⊢ ( 𝑧  ≤  𝑦  →  ( ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵  →  ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							com12 | 
							⊢ ( ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵  →  ( 𝑧  ≤  𝑦  →  ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 ) )  | 
						
						
							| 28 | 
							
								23 27
							 | 
							syl | 
							⊢ ( 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( 𝑧  ≤  𝑦  →  ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 ) )  | 
						
						
							| 29 | 
							
								19 28
							 | 
							rexlimi | 
							⊢ ( ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦  →  ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦  →  ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 ) )  | 
						
						
							| 31 | 
							
								18 30
							 | 
							impbid | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  ↔  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 ) )  | 
						
						
							| 32 | 
							
								2 31
							 | 
							ralbid | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 ) )  | 
						
						
							| 33 | 
							
								1 9 3
							 | 
							rnmptssd | 
							⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ* )  | 
						
						
							| 34 | 
							
								
							 | 
							infxrunb3 | 
							⊢ ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ*  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦  ↔  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ* ,   <  )  =  -∞ ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦  ↔  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ* ,   <  )  =  -∞ ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  ↔  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ* ,   <  )  =  -∞ ) )  |