Metamath Proof Explorer


Theorem inimasn

Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017)

Ref Expression
Assertion inimasn ( 𝐶𝑉 → ( ( 𝐴𝐵 ) “ { 𝐶 } ) = ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) ↔ ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ∧ 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ) )
2 elin ( ⟨ 𝐶 , 𝑥 ⟩ ∈ ( 𝐴𝐵 ) ↔ ( ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐴 ∧ ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐵 ) )
3 2 a1i ( 𝐶𝑉 → ( ⟨ 𝐶 , 𝑥 ⟩ ∈ ( 𝐴𝐵 ) ↔ ( ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐴 ∧ ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐵 ) ) )
4 elimasng ( ( 𝐶𝑉𝑥 ∈ V ) → ( 𝑥 ∈ ( ( 𝐴𝐵 ) “ { 𝐶 } ) ↔ ⟨ 𝐶 , 𝑥 ⟩ ∈ ( 𝐴𝐵 ) ) )
5 4 elvd ( 𝐶𝑉 → ( 𝑥 ∈ ( ( 𝐴𝐵 ) “ { 𝐶 } ) ↔ ⟨ 𝐶 , 𝑥 ⟩ ∈ ( 𝐴𝐵 ) ) )
6 elimasng ( ( 𝐶𝑉𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ↔ ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐴 ) )
7 6 elvd ( 𝐶𝑉 → ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ↔ ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐴 ) )
8 elimasng ( ( 𝐶𝑉𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ↔ ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐵 ) )
9 8 elvd ( 𝐶𝑉 → ( 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ↔ ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐵 ) )
10 7 9 anbi12d ( 𝐶𝑉 → ( ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ∧ 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ) ↔ ( ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐴 ∧ ⟨ 𝐶 , 𝑥 ⟩ ∈ 𝐵 ) ) )
11 3 5 10 3bitr4rd ( 𝐶𝑉 → ( ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ∧ 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ) ↔ 𝑥 ∈ ( ( 𝐴𝐵 ) “ { 𝐶 } ) ) )
12 1 11 bitr2id ( 𝐶𝑉 → ( 𝑥 ∈ ( ( 𝐴𝐵 ) “ { 𝐶 } ) ↔ 𝑥 ∈ ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) ) )
13 12 eqrdv ( 𝐶𝑉 → ( ( 𝐴𝐵 ) “ { 𝐶 } ) = ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) )