Step |
Hyp |
Ref |
Expression |
1 |
|
rnin |
⊢ ran ( ( 𝐴 ↾ 𝐶 ) ∩ ( 𝐵 ↾ 𝐶 ) ) ⊆ ( ran ( 𝐴 ↾ 𝐶 ) ∩ ran ( 𝐵 ↾ 𝐶 ) ) |
2 |
|
df-ima |
⊢ ( ( 𝐴 ∩ 𝐵 ) “ 𝐶 ) = ran ( ( 𝐴 ∩ 𝐵 ) ↾ 𝐶 ) |
3 |
|
resindir |
⊢ ( ( 𝐴 ∩ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ∩ ( 𝐵 ↾ 𝐶 ) ) |
4 |
3
|
rneqi |
⊢ ran ( ( 𝐴 ∩ 𝐵 ) ↾ 𝐶 ) = ran ( ( 𝐴 ↾ 𝐶 ) ∩ ( 𝐵 ↾ 𝐶 ) ) |
5 |
2 4
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) “ 𝐶 ) = ran ( ( 𝐴 ↾ 𝐶 ) ∩ ( 𝐵 ↾ 𝐶 ) ) |
6 |
|
df-ima |
⊢ ( 𝐴 “ 𝐶 ) = ran ( 𝐴 ↾ 𝐶 ) |
7 |
|
df-ima |
⊢ ( 𝐵 “ 𝐶 ) = ran ( 𝐵 ↾ 𝐶 ) |
8 |
6 7
|
ineq12i |
⊢ ( ( 𝐴 “ 𝐶 ) ∩ ( 𝐵 “ 𝐶 ) ) = ( ran ( 𝐴 ↾ 𝐶 ) ∩ ran ( 𝐵 ↾ 𝐶 ) ) |
9 |
1 5 8
|
3sstr4i |
⊢ ( ( 𝐴 ∩ 𝐵 ) “ 𝐶 ) ⊆ ( ( 𝐴 “ 𝐶 ) ∩ ( 𝐵 “ 𝐶 ) ) |