Description: See inundif . (Contributed by Thierry Arnoux, 13-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | inindif | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 | |
2 | 1 | orci | ⊢ ( ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶 ) |
3 | inss | ⊢ ( ( ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∩ 𝐶 ) ∩ 𝐴 ) ⊆ 𝐶 ) | |
4 | 2 3 | ax-mp | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∩ 𝐴 ) ⊆ 𝐶 |
5 | inssdif0 | ⊢ ( ( ( 𝐴 ∩ 𝐶 ) ∩ 𝐴 ) ⊆ 𝐶 ↔ ( ( 𝐴 ∩ 𝐶 ) ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ ) | |
6 | 4 5 | mpbi | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ |