Metamath Proof Explorer


Theorem inindif

Description: See inundif . (Contributed by Thierry Arnoux, 13-Sep-2017)

Ref Expression
Assertion inindif ( ( 𝐴𝐶 ) ∩ ( 𝐴𝐶 ) ) = ∅

Proof

Step Hyp Ref Expression
1 inss2 ( 𝐴𝐶 ) ⊆ 𝐶
2 1 orci ( ( 𝐴𝐶 ) ⊆ 𝐶𝐴𝐶 )
3 inss ( ( ( 𝐴𝐶 ) ⊆ 𝐶𝐴𝐶 ) → ( ( 𝐴𝐶 ) ∩ 𝐴 ) ⊆ 𝐶 )
4 2 3 ax-mp ( ( 𝐴𝐶 ) ∩ 𝐴 ) ⊆ 𝐶
5 inssdif0 ( ( ( 𝐴𝐶 ) ∩ 𝐴 ) ⊆ 𝐶 ↔ ( ( 𝐴𝐶 ) ∩ ( 𝐴𝐶 ) ) = ∅ )
6 4 5 mpbi ( ( 𝐴𝐶 ) ∩ ( 𝐴𝐶 ) ) = ∅