Metamath Proof Explorer


Theorem iniseg

Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 28-Apr-2004)

Ref Expression
Assertion iniseg ( 𝐵𝑉 → ( 𝐴 “ { 𝐵 } ) = { 𝑥𝑥 𝐴 𝐵 } )

Proof

Step Hyp Ref Expression
1 elex ( 𝐵𝑉𝐵 ∈ V )
2 vex 𝑥 ∈ V
3 2 eliniseg ( 𝐵 ∈ V → ( 𝑥 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝑥 𝐴 𝐵 ) )
4 3 abbi2dv ( 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = { 𝑥𝑥 𝐴 𝐵 } )
5 1 4 syl ( 𝐵𝑉 → ( 𝐴 “ { 𝐵 } ) = { 𝑥𝑥 𝐴 𝐵 } )