Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ ran 𝐹 → 𝐴 ∈ V ) |
2 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
3 |
2
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
4 |
3
|
imaeq2d |
⊢ ( ¬ 𝐴 ∈ V → ( ◡ 𝐹 “ { 𝐴 } ) = ( ◡ 𝐹 “ ∅ ) ) |
5 |
|
ima0 |
⊢ ( ◡ 𝐹 “ ∅ ) = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ( ◡ 𝐹 “ { 𝐴 } ) = ∅ ) |
7 |
6
|
necon1ai |
⊢ ( ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ → 𝐴 ∈ V ) |
8 |
|
eleq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∈ ran 𝐹 ↔ 𝐴 ∈ ran 𝐹 ) ) |
9 |
|
sneq |
⊢ ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } ) |
10 |
9
|
imaeq2d |
⊢ ( 𝑎 = 𝐴 → ( ◡ 𝐹 “ { 𝑎 } ) = ( ◡ 𝐹 “ { 𝐴 } ) ) |
11 |
10
|
neeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( ◡ 𝐹 “ { 𝑎 } ) ≠ ∅ ↔ ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) ) |
12 |
|
abn0 |
⊢ ( { 𝑏 ∣ 𝑏 𝐹 𝑎 } ≠ ∅ ↔ ∃ 𝑏 𝑏 𝐹 𝑎 ) |
13 |
|
iniseg |
⊢ ( 𝑎 ∈ V → ( ◡ 𝐹 “ { 𝑎 } ) = { 𝑏 ∣ 𝑏 𝐹 𝑎 } ) |
14 |
13
|
elv |
⊢ ( ◡ 𝐹 “ { 𝑎 } ) = { 𝑏 ∣ 𝑏 𝐹 𝑎 } |
15 |
14
|
neeq1i |
⊢ ( ( ◡ 𝐹 “ { 𝑎 } ) ≠ ∅ ↔ { 𝑏 ∣ 𝑏 𝐹 𝑎 } ≠ ∅ ) |
16 |
|
vex |
⊢ 𝑎 ∈ V |
17 |
16
|
elrn |
⊢ ( 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑏 𝑏 𝐹 𝑎 ) |
18 |
12 15 17
|
3bitr4ri |
⊢ ( 𝑎 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑎 } ) ≠ ∅ ) |
19 |
8 11 18
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) ) |
20 |
1 7 19
|
pm5.21nii |
⊢ ( 𝐴 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) |