| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoeu1.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | initoeu1.a | ⊢ ( 𝜑  →  𝐴  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 3 |  | initoeu1.b | ⊢ ( 𝜑  →  𝐵  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 5 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 6 | 4 5 1 | isinitoi | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( InitO ‘ 𝐶 ) )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 ) ) ) | 
						
							| 7 | 2 6 | mpdan | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 ) ) ) | 
						
							| 8 | 4 5 1 | isinitoi | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( InitO ‘ 𝐶 ) )  →  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) ) ) | 
						
							| 9 | 3 8 | mpdan | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  =  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝑏  =  𝐵  →  ( 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  ↔  𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 12 | 11 | eubidv | ⊢ ( 𝑏  =  𝐵  →  ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  ↔  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 13 | 12 | rspcv | ⊢ ( 𝐵  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( Iso ‘ 𝐶 )  =  ( Iso ‘ 𝐶 ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  𝐶  ∈  Cat ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  𝐴  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  𝐵  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 18 | 4 5 14 15 16 17 | isohom | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 )  ⊆  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) ) )  →  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 )  ⊆  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 20 |  | euex | ⊢ ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  =  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  ↔  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) ) | 
						
							| 24 | 23 | eubidv | ⊢ ( 𝑎  =  𝐴  →  ( ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  ↔  ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) ) | 
						
							| 25 | 24 | rspcva | ⊢ ( ( 𝐴  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 26 |  | euex | ⊢ ( ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  →  ∃ 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝐴  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ∃ 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  →  ∃ 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) ) | 
						
							| 29 | 28 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  →  ∃ 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 ) | 
						
							| 31 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  ∧  𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐶  ∈  Cat ) | 
						
							| 32 | 16 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  ∧  𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐴  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 33 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  ∧  𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐵  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 34 | 1 2 3 | 2initoinv | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝑓 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝑔 ) | 
						
							| 35 | 34 | ad4ant134 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  ∧  𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝑓 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝑔 ) | 
						
							| 36 | 4 30 31 32 33 14 35 | inviso1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  ∧  𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  →  ( 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 38 | 37 | eximdv | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  →  ( ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 39 | 38 | expcom | ⊢ ( 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  →  ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) | 
						
							| 40 | 39 | exlimiv | ⊢ ( ∃ 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  →  ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) | 
						
							| 41 | 40 | com3l | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ( ∃ 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) | 
						
							| 42 | 41 | impd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ( ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∃ 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 43 | 21 29 42 | syl2and | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) ) )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 45 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) ) )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 46 |  | euelss | ⊢ ( ( ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 )  ⊆  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 )  ∧  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 47 | 19 44 45 46 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  𝐴  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) ) )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 48 | 47 | exp42 | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( Base ‘ 𝐶 )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) | 
						
							| 49 | 48 | com24 | ⊢ ( 𝜑  →  ( ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( 𝐵  ∈  ( Base ‘ 𝐶 )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) | 
						
							| 50 | 49 | com14 | ⊢ ( 𝐵  ∈  ( Base ‘ 𝐶 )  →  ( ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( 𝜑  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) | 
						
							| 51 | 50 | expd | ⊢ ( 𝐵  ∈  ( Base ‘ 𝐶 )  →  ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( 𝜑  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) | 
						
							| 52 | 13 51 | syldc | ⊢ ( ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  →  ( 𝐵  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( 𝜑  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) | 
						
							| 53 | 52 | com15 | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) | 
						
							| 54 | 53 | impd | ⊢ ( 𝜑  →  ( ( 𝐵  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) | 
						
							| 55 | 9 54 | mpd | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) | 
						
							| 56 | 55 | impd | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝑏 ) )  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 57 | 7 56 | mpd | ⊢ ( 𝜑  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |