| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoeu1.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | initoeu1.a | ⊢ ( 𝜑  →  𝐴  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 3 |  | initoeu1.b | ⊢ ( 𝜑  →  𝐵  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 4 | 1 2 3 | initoeu1 | ⊢ ( 𝜑  →  ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 5 |  | euex | ⊢ ( ∃! 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 )  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Iso ‘ 𝐶 )  =  ( Iso ‘ 𝐶 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 9 |  | initoo | ⊢ ( 𝐶  ∈  Cat  →  ( 𝐴  ∈  ( InitO ‘ 𝐶 )  →  𝐴  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 10 | 1 2 9 | sylc | ⊢ ( 𝜑  →  𝐴  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 11 |  | initoo | ⊢ ( 𝐶  ∈  Cat  →  ( 𝐵  ∈  ( InitO ‘ 𝐶 )  →  𝐵  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 12 | 1 3 11 | sylc | ⊢ ( 𝜑  →  𝐵  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 13 | 7 8 1 10 12 | cic | ⊢ ( 𝜑  →  ( 𝐴 (  ≃𝑐  ‘ 𝐶 ) 𝐵  ↔  ∃ 𝑓 𝑓  ∈  ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 14 | 6 13 | mpbird | ⊢ ( 𝜑  →  𝐴 (  ≃𝑐  ‘ 𝐶 ) 𝐵 ) |