| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoeu1.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | initoeu1.a | ⊢ ( 𝜑  →  𝐴  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 3 |  | initoeu2lem.x | ⊢ 𝑋  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | initoeu2lem.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 5 |  | initoeu2lem.i | ⊢ 𝐼  =  ( Iso ‘ 𝐶 ) | 
						
							| 6 |  | initoeu2lem.o | ⊢  ⚬   =  ( comp ‘ 𝐶 ) | 
						
							| 7 |  | 3simpa | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  ∧  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  =  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) )  →  ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) ) ) | 
						
							| 8 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  ∧  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  =  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) )  →  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  =  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  ∧  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  =  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) )  →  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  =  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  𝐶  ∈  Cat ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐶  ∈  Cat ) | 
						
							| 13 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 15 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 17 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐷  ∈  𝑋 ) | 
						
							| 18 | 5 | oveqi | ⊢ ( 𝐵 𝐼 𝐴 )  =  ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) | 
						
							| 19 | 18 | eleq2i | ⊢ ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ↔  𝐾  ∈  ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 20 | 19 | biimpi | ⊢ ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  →  𝐾  ∈  ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  →  𝐾  ∈  ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐾  ∈  ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 23 | 4 | oveqi | ⊢ ( 𝐵 𝐻 𝐷 )  =  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐷 ) | 
						
							| 24 | 23 | eleq2i | ⊢ ( 𝐺  ∈  ( 𝐵 𝐻 𝐷 )  ↔  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 25 | 24 | biimpi | ⊢ ( 𝐺  ∈  ( 𝐵 𝐻 𝐷 )  →  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  →  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 28 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 29 | 3 28 5 11 15 13 | isohom | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  ( 𝐵 𝐼 𝐴 )  ⊆  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 30 | 29 | sseld | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  →  𝐾  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) ) | 
						
							| 31 | 30 | com12 | ⊢ ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  →  ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  𝐾  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  →  ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  𝐾  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) ) | 
						
							| 33 | 32 | impcom | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐾  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 34 | 4 | oveqi | ⊢ ( 𝐴 𝐻 𝐷 )  =  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐷 ) | 
						
							| 35 | 34 | eleq2i | ⊢ ( 𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ↔  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 36 | 35 | biimpi | ⊢ ( 𝐹  ∈  ( 𝐴 𝐻 𝐷 )  →  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  →  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 39 | 3 28 6 12 16 14 17 33 38 | catcocl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 )  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐷 ) ) | 
						
							| 40 |  | eqid | ⊢ ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 )  =  ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) | 
						
							| 41 | 6 | oveqi | ⊢ ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 )  =  ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐷 ) | 
						
							| 42 | 3 10 12 14 16 17 22 27 39 40 41 | rcaninv | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) ) )  →  ( ( 𝐺 ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  =  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  →  𝐺  =  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ) ) | 
						
							| 43 | 7 9 42 | sylc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  ∧  ( 𝐾  ∈  ( 𝐵 𝐼 𝐴 )  ∧  𝐹  ∈  ( 𝐴 𝐻 𝐷 )  ∧  𝐺  ∈  ( 𝐵 𝐻 𝐷 ) )  ∧  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) )  =  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉  ⚬  𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) )  →  𝐺  =  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉  ⚬  𝐷 ) 𝐾 ) ) |