| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzo0ss1 | ⊢ ( 1 ..^ 𝐾 )  ⊆  ( 0 ..^ 𝐾 ) | 
						
							| 2 |  | fzossfz | ⊢ ( 0 ..^ 𝐾 )  ⊆  ( 0 ... 𝐾 ) | 
						
							| 3 | 1 2 | sstri | ⊢ ( 1 ..^ 𝐾 )  ⊆  ( 0 ... 𝐾 ) | 
						
							| 4 |  | fssres | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  ( 1 ..^ 𝐾 )  ⊆  ( 0 ... 𝐾 ) )  →  ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) | 
						
							| 5 | 3 4 | mpan2 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) | 
						
							| 6 | 5 | biantrud | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  ↔  ( Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) ) ) | 
						
							| 7 |  | ancom | ⊢ ( ( Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 )  ↔  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉  ∧  Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 8 |  | df-f1 | ⊢ ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ↔  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉  ∧  Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 9 | 7 8 | bitr4i | ⊢ ( ( Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 )  ↔  ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ) | 
						
							| 10 | 6 9 | bitrdi | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  ↔  ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ) ) | 
						
							| 11 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) | 
						
							| 12 |  | dff13 | ⊢ ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ↔  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉  ∧  ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 ) ) ) | 
						
							| 13 |  | fveqeq2 | ⊢ ( 𝑣  =  𝑥  →  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  ↔  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) ) ) | 
						
							| 14 |  | equequ1 | ⊢ ( 𝑣  =  𝑥  →  ( 𝑣  =  𝑤  ↔  𝑥  =  𝑤 ) ) | 
						
							| 15 | 13 14 | imbi12d | ⊢ ( 𝑣  =  𝑥  →  ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  ↔  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑥  =  𝑤 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  ↔  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) ) | 
						
							| 18 |  | equequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  =  𝑤  ↔  𝑥  =  𝑦 ) ) | 
						
							| 19 | 17 18 | imbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑥  =  𝑤 )  ↔  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 20 | 15 19 | rspc2va | ⊢ ( ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 ) )  →  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 21 |  | fvres | ⊢ ( 𝑥  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( 𝑥  ∈  ( 1 ..^ 𝐾 )  →  ( 𝐹 ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) ) | 
						
							| 23 |  | fvres | ⊢ ( 𝑦  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( 𝑦  ∈  ( 1 ..^ 𝐾 )  →  ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) | 
						
							| 25 | 22 24 | eqeqan12d | ⊢ ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) ) | 
						
							| 26 | 25 | biimpd | ⊢ ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) ) | 
						
							| 27 | 26 | imim1d | ⊢ ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  ∧  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 29 | 28 | 2a1d | ⊢ ( ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  ∧  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 30 | 29 | 2a1d | ⊢ ( ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  ∧  ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) | 
						
							| 31 | 30 | expcom | ⊢ ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) ) | 
						
							| 32 | 20 31 | syl | ⊢ ( ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 ) )  →  ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  →  ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) ) ) | 
						
							| 34 | 33 | pm2.43a | ⊢ ( ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) ) | 
						
							| 35 |  | ianor | ⊢ ( ¬  ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  ↔  ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∨  ¬  𝑦  ∈  ( 1 ..^ 𝐾 ) ) ) | 
						
							| 36 |  | eqcom | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 37 |  | injresinjlem | ⊢ ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑦  ∈  ( 0 ... 𝐾 )  ∧  𝑥  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  =  𝑥 ) ) ) ) ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑦  ∈  ( 0 ... 𝐾 )  ∧  𝑥  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  =  𝑥 ) ) ) ) ) | 
						
							| 39 | 38 | imp41 | ⊢ ( ( ( ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  ∧  ( 𝑦  ∈  ( 0 ... 𝐾 )  ∧  𝑥  ∈  ( 0 ... 𝐾 ) ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  =  𝑥 ) ) | 
						
							| 40 |  | eqcom | ⊢ ( 𝑦  =  𝑥  ↔  𝑥  =  𝑦 ) | 
						
							| 41 | 39 40 | imbitrdi | ⊢ ( ( ( ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  ∧  ( 𝑦  ∈  ( 0 ... 𝐾 )  ∧  𝑥  ∈  ( 0 ... 𝐾 ) ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 42 | 36 41 | biimtrid | ⊢ ( ( ( ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  ∧  ( 𝑦  ∈  ( 0 ... 𝐾 )  ∧  𝑥  ∈  ( 0 ... 𝐾 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ( ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  ( ( 𝑦  ∈  ( 0 ... 𝐾 )  ∧  𝑥  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 44 | 43 | ancomsd | ⊢ ( ( ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 45 | 44 | exp41 | ⊢ ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) | 
						
							| 46 |  | injresinjlem | ⊢ ( ¬  𝑦  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) | 
						
							| 47 | 45 46 | jaoi | ⊢ ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∨  ¬  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) | 
						
							| 48 | 47 | a1d | ⊢ ( ( ¬  𝑥  ∈  ( 1 ..^ 𝐾 )  ∨  ¬  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) ) | 
						
							| 49 | 35 48 | sylbi | ⊢ ( ¬  ( 𝑥  ∈  ( 1 ..^ 𝐾 )  ∧  𝑦  ∈  ( 1 ..^ 𝐾 ) )  →  ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) ) | 
						
							| 50 | 34 49 | pm2.61i | ⊢ ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) | 
						
							| 51 | 50 | imp41 | ⊢ ( ( ( ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  ( ( 𝑥  ∈  ( 0 ... 𝐾 )  ∧  𝑦  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 52 | 51 | ralrimivv | ⊢ ( ( ( ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 53 | 52 | exp41 | ⊢ ( ∀ 𝑣  ∈  ( 1 ..^ 𝐾 ) ∀ 𝑤  ∈  ( 1 ..^ 𝐾 ) ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑣 )  =  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) ‘ 𝑤 )  →  𝑣  =  𝑤 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 54 | 12 53 | simplbiim | ⊢ ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 55 | 54 | com13 | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 56 | 55 | ex | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( 𝐾  ∈  ℕ0  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) | 
						
							| 57 | 56 | com24 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) ) | 
						
							| 58 | 57 | impcom | ⊢ ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 59 | 58 | imp41 | ⊢ ( ( ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 60 |  | dff13 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉  ↔  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  ∀ 𝑥  ∈  ( 0 ... 𝐾 ) ∀ 𝑦  ∈  ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 61 | 11 59 60 | sylanbrc | ⊢ ( ( ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉 ) | 
						
							| 62 | 11 | biantrurd | ⊢ ( ( ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  ( Fun  ◡ 𝐹  ↔  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  Fun  ◡ 𝐹 ) ) ) | 
						
							| 63 |  | df-f1 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉  ↔  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 64 | 62 63 | bitr4di | ⊢ ( ( ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  ( Fun  ◡ 𝐹  ↔  𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉 ) ) | 
						
							| 65 | 61 64 | mpbird | ⊢ ( ( ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅ )  →  Fun  ◡ 𝐹 ) | 
						
							| 66 | 65 | ex | ⊢ ( ( ( ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  ∧  𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  Fun  ◡ 𝐹 ) ) | 
						
							| 67 | 66 | exp41 | ⊢ ( ( 𝐹  ↾  ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉  →  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  Fun  ◡ 𝐹 ) ) ) ) ) | 
						
							| 68 | 10 67 | biimtrdi | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  →  ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  Fun  ◡ 𝐹 ) ) ) ) ) ) | 
						
							| 69 | 68 | pm2.43a | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  ( Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  Fun  ◡ 𝐹 ) ) ) ) ) | 
						
							| 70 | 69 | 3imp | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  Fun  ◡ 𝐹 ) ) ) | 
						
							| 71 | 70 | com12 | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  Fun  ◡ ( 𝐹  ↾  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 ) )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  Fun  ◡ 𝐹 ) ) ) |