| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznelfzo | ⊢ ( ( 𝑌  ∈  ( 0 ... 𝐾 )  ∧  ¬  𝑌  ∈  ( 1 ..^ 𝐾 ) )  →  ( 𝑌  =  0  ∨  𝑌  =  𝐾 ) ) | 
						
							| 2 |  | fvinim0ffz | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  ↔  ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) ) ) | 
						
							| 3 |  | df-nel | ⊢ ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ¬  ( 𝐹 ‘ 0 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 0  =  𝑌  →  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 5 | 4 | eqcoms | ⊢ ( 𝑌  =  0  →  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑌  =  0  →  ( ( 𝐹 ‘ 0 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝑌  =  0  →  ( ¬  ( 𝐹 ‘ 0 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ¬  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 8 | 7 | biimpd | ⊢ ( 𝑌  =  0  →  ( ¬  ( 𝐹 ‘ 0 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ¬  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 9 |  | ffn | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  →  𝐹  Fn  ( 0 ... 𝐾 ) ) | 
						
							| 10 |  | 1eluzge0 | ⊢ 1  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 11 |  | fzoss1 | ⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  ( 1 ..^ 𝐾 )  ⊆  ( 0 ..^ 𝐾 ) ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( 𝐾  ∈  ℕ0  →  ( 1 ..^ 𝐾 )  ⊆  ( 0 ..^ 𝐾 ) ) | 
						
							| 13 |  | fzossfz | ⊢ ( 0 ..^ 𝐾 )  ⊆  ( 0 ... 𝐾 ) | 
						
							| 14 | 12 13 | sstrdi | ⊢ ( 𝐾  ∈  ℕ0  →  ( 1 ..^ 𝐾 )  ⊆  ( 0 ... 𝐾 ) ) | 
						
							| 15 |  | fvelimab | ⊢ ( ( 𝐹  Fn  ( 0 ... 𝐾 )  ∧  ( 1 ..^ 𝐾 )  ⊆  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ∃ 𝑧  ∈  ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 16 | 9 14 15 | syl2an | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ∃ 𝑧  ∈  ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 17 | 16 | notbid | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ¬  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ¬  ∃ 𝑧  ∈  ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 18 |  | ralnex | ⊢ ( ∀ 𝑧  ∈  ( 1 ..^ 𝐾 ) ¬  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 )  ↔  ¬  ∃ 𝑧  ∈  ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 19 |  | fveqeq2 | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝑧  =  𝑋  →  ( ¬  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 )  ↔  ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 21 | 20 | rspcva | ⊢ ( ( 𝑋  ∈  ( 1 ..^ 𝐾 )  ∧  ∀ 𝑧  ∈  ( 1 ..^ 𝐾 ) ¬  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 ) )  →  ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 22 |  | pm2.21 | ⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) | 
						
							| 23 | 22 | a1d | ⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 24 | 23 | 2a1d | ⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 25 | 21 24 | syl | ⊢ ( ( 𝑋  ∈  ( 1 ..^ 𝐾 )  ∧  ∀ 𝑧  ∈  ( 1 ..^ 𝐾 ) ¬  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 26 | 25 | expcom | ⊢ ( ∀ 𝑧  ∈  ( 1 ..^ 𝐾 ) ¬  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 27 | 26 | com24 | ⊢ ( ∀ 𝑧  ∈  ( 1 ..^ 𝐾 ) ¬  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 28 | 18 27 | sylbir | ⊢ ( ¬  ∃ 𝑧  ∈  ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 29 | 28 | com12 | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ¬  ∃ 𝑧  ∈  ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑌 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 30 | 17 29 | sylbid | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ¬  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 31 | 30 | com12 | ⊢ ( ¬  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 32 | 8 31 | syl6com | ⊢ ( ¬  ( 𝐹 ‘ 0 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ( 𝑌  =  0  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 33 | 3 32 | sylbi | ⊢ ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ( 𝑌  =  0  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  →  ( 𝑌  =  0  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( 𝑌  =  0  →  ( ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 36 |  | df-nel | ⊢ ( ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ¬  ( 𝐹 ‘ 𝐾 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝐾  =  𝑌  →  ( 𝐹 ‘ 𝐾 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 38 | 37 | eqcoms | ⊢ ( 𝑌  =  𝐾  →  ( 𝐹 ‘ 𝐾 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( 𝑌  =  𝐾  →  ( ( 𝐹 ‘ 𝐾 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 40 | 39 | notbid | ⊢ ( 𝑌  =  𝐾  →  ( ¬  ( 𝐹 ‘ 𝐾 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ↔  ¬  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 41 | 40 | biimpd | ⊢ ( 𝑌  =  𝐾  →  ( ¬  ( 𝐹 ‘ 𝐾 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ¬  ( 𝐹 ‘ 𝑌 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) ) ) | 
						
							| 42 | 41 31 | syl6com | ⊢ ( ¬  ( 𝐹 ‘ 𝐾 )  ∈  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ( 𝑌  =  𝐾  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 43 | 36 42 | sylbi | ⊢ ( ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  →  ( 𝑌  =  𝐾  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  →  ( 𝑌  =  𝐾  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( 𝑌  =  𝐾  →  ( ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 46 | 35 45 | jaoi | ⊢ ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 47 | 46 | com13 | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹 ‘ 0 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) )  ∧  ( 𝐹 ‘ 𝐾 )  ∉  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 48 | 2 47 | sylbid | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 49 | 48 | com14 | ⊢ ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 50 | 49 | com12 | ⊢ ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 51 | 50 | com15 | ⊢ ( 𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 52 |  | elfznelfzo | ⊢ ( ( 𝑋  ∈  ( 0 ... 𝐾 )  ∧  ¬  𝑋  ∈  ( 1 ..^ 𝐾 ) )  →  ( 𝑋  =  0  ∨  𝑋  =  𝐾 ) ) | 
						
							| 53 |  | eqtr3 | ⊢ ( ( 𝑋  =  0  ∧  𝑌  =  0 )  →  𝑋  =  𝑌 ) | 
						
							| 54 |  | 2a1 | ⊢ ( 𝑋  =  𝑌  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 55 | 54 | 2a1d | ⊢ ( 𝑋  =  𝑌  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 56 | 53 55 | syl | ⊢ ( ( 𝑋  =  0  ∧  𝑌  =  0 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 57 | 5 | adantl | ⊢ ( ( 𝑋  =  𝐾  ∧  𝑌  =  0 )  →  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝐾  =  𝑋  →  ( 𝐹 ‘ 𝐾 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 59 | 58 | eqcoms | ⊢ ( 𝑋  =  𝐾  →  ( 𝐹 ‘ 𝐾 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝑋  =  𝐾  ∧  𝑌  =  0 )  →  ( 𝐹 ‘ 𝐾 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 61 | 57 60 | neeq12d | ⊢ ( ( 𝑋  =  𝐾  ∧  𝑌  =  0 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  ↔  ( 𝐹 ‘ 𝑌 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 62 |  | df-ne | ⊢ ( ( 𝐹 ‘ 𝑌 )  ≠  ( 𝐹 ‘ 𝑋 )  ↔  ¬  ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 63 |  | pm2.24 | ⊢ ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  ( ¬  ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑌 ) ) | 
						
							| 64 | 63 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  ( ¬  ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑌 ) ) | 
						
							| 65 | 64 | com12 | ⊢ ( ¬  ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) | 
						
							| 66 | 62 65 | sylbi | ⊢ ( ( 𝐹 ‘ 𝑌 )  ≠  ( 𝐹 ‘ 𝑋 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) | 
						
							| 67 | 61 66 | biimtrdi | ⊢ ( ( 𝑋  =  𝐾  ∧  𝑌  =  0 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 68 | 67 | 2a1d | ⊢ ( ( 𝑋  =  𝐾  ∧  𝑌  =  0 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 0  =  𝑋  →  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 70 | 69 | eqcoms | ⊢ ( 𝑋  =  0  →  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝑋  =  0  ∧  𝑌  =  𝐾 )  →  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 72 | 38 | adantl | ⊢ ( ( 𝑋  =  0  ∧  𝑌  =  𝐾 )  →  ( 𝐹 ‘ 𝐾 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 73 | 71 72 | neeq12d | ⊢ ( ( 𝑋  =  0  ∧  𝑌  =  𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  ↔  ( 𝐹 ‘ 𝑋 )  ≠  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 74 |  | df-ne | ⊢ ( ( 𝐹 ‘ 𝑋 )  ≠  ( 𝐹 ‘ 𝑌 )  ↔  ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 75 | 74 22 | sylbi | ⊢ ( ( 𝐹 ‘ 𝑋 )  ≠  ( 𝐹 ‘ 𝑌 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) | 
						
							| 76 | 73 75 | biimtrdi | ⊢ ( ( 𝑋  =  0  ∧  𝑌  =  𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 77 | 76 | 2a1d | ⊢ ( ( 𝑋  =  0  ∧  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 78 |  | eqtr3 | ⊢ ( ( 𝑋  =  𝐾  ∧  𝑌  =  𝐾 )  →  𝑋  =  𝑌 ) | 
						
							| 79 | 78 55 | syl | ⊢ ( ( 𝑋  =  𝐾  ∧  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 80 | 56 68 77 79 | ccase | ⊢ ( ( ( 𝑋  =  0  ∨  𝑋  =  𝐾 )  ∧  ( 𝑌  =  0  ∨  𝑌  =  𝐾 ) )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) | 
						
							| 81 | 80 | ex | ⊢ ( ( 𝑋  =  0  ∨  𝑋  =  𝐾 )  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 82 | 52 81 | syl | ⊢ ( ( 𝑋  ∈  ( 0 ... 𝐾 )  ∧  ¬  𝑋  ∈  ( 1 ..^ 𝐾 ) )  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 83 | 82 | expcom | ⊢ ( ¬  𝑋  ∈  ( 1 ..^ 𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 84 | 51 83 | pm2.61i | ⊢ ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 85 | 84 | com12 | ⊢ ( ( 𝑌  =  0  ∨  𝑌  =  𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 86 | 1 85 | syl | ⊢ ( ( 𝑌  ∈  ( 0 ... 𝐾 )  ∧  ¬  𝑌  ∈  ( 1 ..^ 𝐾 ) )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝑌  ∈  ( 0 ... 𝐾 )  →  ( ¬  𝑌  ∈  ( 1 ..^ 𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 88 | 87 | com23 | ⊢ ( 𝑌  ∈  ( 0 ... 𝐾 )  →  ( 𝑋  ∈  ( 0 ... 𝐾 )  →  ( ¬  𝑌  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) ) | 
						
							| 89 | 88 | impcom | ⊢ ( ( 𝑋  ∈  ( 0 ... 𝐾 )  ∧  𝑌  ∈  ( 0 ... 𝐾 ) )  →  ( ¬  𝑌  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 90 | 89 | com12 | ⊢ ( ¬  𝑌  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝑋  ∈  ( 0 ... 𝐾 )  ∧  𝑌  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) | 
						
							| 91 | 90 | com25 | ⊢ ( ¬  𝑌  ∈  ( 1 ..^ 𝐾 )  →  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 𝐾 )  →  ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝐹  “  { 0 ,  𝐾 } )  ∩  ( 𝐹  “  ( 1 ..^ 𝐾 ) ) )  =  ∅  →  ( ( 𝑋  ∈  ( 0 ... 𝐾 )  ∧  𝑌  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) ) ) |