Metamath Proof Explorer


Theorem inlinecirc02preu

Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023)

Ref Expression
Hypotheses inlinecirc02p.i 𝐼 = { 1 , 2 }
inlinecirc02p.e 𝐸 = ( ℝ^ ‘ 𝐼 )
inlinecirc02p.p 𝑃 = ( ℝ ↑m 𝐼 )
inlinecirc02p.s 𝑆 = ( Sphere ‘ 𝐸 )
inlinecirc02p.0 0 = ( 𝐼 × { 0 } )
inlinecirc02p.l 𝐿 = ( LineM𝐸 )
inlinecirc02p.d 𝐷 = ( dist ‘ 𝐸 )
Assertion inlinecirc02preu ( ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ∃! 𝑝 ∈ 𝒫 𝑃 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 inlinecirc02p.i 𝐼 = { 1 , 2 }
2 inlinecirc02p.e 𝐸 = ( ℝ^ ‘ 𝐼 )
3 inlinecirc02p.p 𝑃 = ( ℝ ↑m 𝐼 )
4 inlinecirc02p.s 𝑆 = ( Sphere ‘ 𝐸 )
5 inlinecirc02p.0 0 = ( 𝐼 × { 0 } )
6 inlinecirc02p.l 𝐿 = ( LineM𝐸 )
7 inlinecirc02p.d 𝐷 = ( dist ‘ 𝐸 )
8 1 2 3 4 5 6 7 inlinecirc02p ( ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ∈ ( Pairsproper𝑃 ) )
9 reueq ( ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ∈ ( Pairsproper𝑃 ) ↔ ∃! 𝑝 ∈ ( Pairsproper𝑃 ) 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) )
10 8 9 sylib ( ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ∃! 𝑝 ∈ ( Pairsproper𝑃 ) 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) )
11 3 ovexi 𝑃 ∈ V
12 prprreueq ( 𝑃 ∈ V → ( ∃! 𝑝 ∈ ( Pairsproper𝑃 ) 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ↔ ∃! 𝑝 ∈ 𝒫 𝑃 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ) ) )
13 11 12 mp1i ( ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ( ∃! 𝑝 ∈ ( Pairsproper𝑃 ) 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ↔ ∃! 𝑝 ∈ 𝒫 𝑃 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ) ) )
14 10 13 mpbid ( ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ∃! 𝑝 ∈ 𝒫 𝑃 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝑝 = ( ( 0 𝑆 𝑅 ) ∩ ( 𝑋 𝐿 𝑌 ) ) ) )