| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djulf1o | ⊢ inl : V –1-1-onto→ ( { ∅ }  ×  V ) | 
						
							| 2 |  | f1ofun | ⊢ ( inl : V –1-1-onto→ ( { ∅ }  ×  V )  →  Fun  inl ) | 
						
							| 3 |  | ffvresb | ⊢ ( Fun  inl  →  ( ( inl  ↾  𝐴 ) : 𝐴 ⟶ ( 𝐴  ⊔  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑥  ∈  dom  inl  ∧  ( inl ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) ) ) | 
						
							| 4 | 1 2 3 | mp2b | ⊢ ( ( inl  ↾  𝐴 ) : 𝐴 ⟶ ( 𝐴  ⊔  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑥  ∈  dom  inl  ∧  ( inl ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 5 |  | elex | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  V ) | 
						
							| 6 |  | opex | ⊢ 〈 ∅ ,  𝑥 〉  ∈  V | 
						
							| 7 |  | df-inl | ⊢ inl  =  ( 𝑥  ∈  V  ↦  〈 ∅ ,  𝑥 〉 ) | 
						
							| 8 | 6 7 | dmmpti | ⊢ dom  inl  =  V | 
						
							| 9 | 5 8 | eleqtrrdi | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  dom  inl ) | 
						
							| 10 |  | djulcl | ⊢ ( 𝑥  ∈  𝐴  →  ( inl ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 11 | 9 10 | jca | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  dom  inl  ∧  ( inl ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 12 | 4 11 | mprgbir | ⊢ ( inl  ↾  𝐴 ) : 𝐴 ⟶ ( 𝐴  ⊔  𝐵 ) |