Metamath Proof Explorer


Theorem inlresf

Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022)

Ref Expression
Assertion inlresf ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 djulf1o inl : V –1-1-onto→ ( { ∅ } × V )
2 f1ofun ( inl : V –1-1-onto→ ( { ∅ } × V ) → Fun inl )
3 ffvresb ( Fun inl → ( ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴𝐵 ) ) ) )
4 1 2 3 mp2b ( ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴𝐵 ) ) )
5 elex ( 𝑥𝐴𝑥 ∈ V )
6 opex ⟨ ∅ , 𝑥 ⟩ ∈ V
7 df-inl inl = ( 𝑥 ∈ V ↦ ⟨ ∅ , 𝑥 ⟩ )
8 6 7 dmmpti dom inl = V
9 5 8 eleqtrrdi ( 𝑥𝐴𝑥 ∈ dom inl )
10 djulcl ( 𝑥𝐴 → ( inl ‘ 𝑥 ) ∈ ( 𝐴𝐵 ) )
11 9 10 jca ( 𝑥𝐴 → ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴𝐵 ) ) )
12 4 11 mprgbir ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴𝐵 )