Step |
Hyp |
Ref |
Expression |
1 |
|
djulf1o |
⊢ inl : V –1-1-onto→ ( { ∅ } × V ) |
2 |
|
f1ofun |
⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → Fun inl ) |
3 |
|
ffvresb |
⊢ ( Fun inl → ( ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
5 |
|
elex |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ V ) |
6 |
|
opex |
⊢ 〈 ∅ , 𝑥 〉 ∈ V |
7 |
|
df-inl |
⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) |
8 |
6 7
|
dmmpti |
⊢ dom inl = V |
9 |
5 8
|
eleqtrrdi |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ dom inl ) |
10 |
|
djulcl |
⊢ ( 𝑥 ∈ 𝐴 → ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) |
11 |
9 10
|
jca |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
12 |
4 11
|
mprgbir |
⊢ ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴 ⊔ 𝐵 ) |