Metamath Proof Explorer


Theorem inlresf1

Description: The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022)

Ref Expression
Assertion inlresf1 ( inl ↾ 𝐴 ) : 𝐴1-1→ ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 djulf1o inl : V –1-1-onto→ ( { ∅ } × V )
2 f1of1 ( inl : V –1-1-onto→ ( { ∅ } × V ) → inl : V –1-1→ ( { ∅ } × V ) )
3 1 2 ax-mp inl : V –1-1→ ( { ∅ } × V )
4 ssv 𝐴 ⊆ V
5 inlresf ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴𝐵 )
6 f1resf1 ( ( inl : V –1-1→ ( { ∅ } × V ) ∧ 𝐴 ⊆ V ∧ ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴𝐵 ) ) → ( inl ↾ 𝐴 ) : 𝐴1-1→ ( 𝐴𝐵 ) )
7 3 4 5 6 mp3an ( inl ↾ 𝐴 ) : 𝐴1-1→ ( 𝐴𝐵 )