Step |
Hyp |
Ref |
Expression |
1 |
|
inmap.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
inmap.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
inmap.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) |
4 |
|
elinel1 |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) → 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) |
5 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → 𝑓 : 𝐶 ⟶ 𝐴 ) |
6 |
4 5
|
syl |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) → 𝑓 : 𝐶 ⟶ 𝐴 ) |
7 |
|
elinel2 |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) → 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) ) |
8 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) → 𝑓 : 𝐶 ⟶ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) → 𝑓 : 𝐶 ⟶ 𝐵 ) |
10 |
6 9
|
jca |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) → ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ 𝑓 : 𝐶 ⟶ 𝐵 ) ) |
11 |
|
fin |
⊢ ( 𝑓 : 𝐶 ⟶ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ 𝑓 : 𝐶 ⟶ 𝐵 ) ) |
12 |
10 11
|
sylibr |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) → 𝑓 : 𝐶 ⟶ ( 𝐴 ∩ 𝐵 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) ) → 𝑓 : 𝐶 ⟶ ( 𝐴 ∩ 𝐵 ) ) |
14 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
16 |
1 15
|
ssexd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
17 |
16 3
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ↔ 𝑓 : 𝐶 ⟶ ( 𝐴 ∩ 𝐵 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) ) → ( 𝑓 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ↔ 𝑓 : 𝐶 ⟶ ( 𝐴 ∩ 𝐵 ) ) ) |
19 |
13 18
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) ) → 𝑓 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) 𝑓 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ) |
21 |
|
dfss3 |
⊢ ( ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ↔ ∀ 𝑓 ∈ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) 𝑓 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ) |
22 |
20 21
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ) |
23 |
|
mapss |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ⊆ ( 𝐴 ↑m 𝐶 ) ) |
24 |
1 15 23
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ⊆ ( 𝐴 ↑m 𝐶 ) ) |
25 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
27 |
|
mapss |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
28 |
2 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
29 |
24 28
|
ssind |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ⊆ ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) ) |
30 |
22 29
|
eqssd |
⊢ ( 𝜑 → ( ( 𝐴 ↑m 𝐶 ) ∩ ( 𝐵 ↑m 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ↑m 𝐶 ) ) |