| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difundi | ⊢ ( ℝ  ∖  ( ( ℝ  ∖  𝐴 )  ∪  ( ℝ  ∖  𝐵 ) ) )  =  ( ( ℝ  ∖  ( ℝ  ∖  𝐴 ) )  ∩  ( ℝ  ∖  ( ℝ  ∖  𝐵 ) ) ) | 
						
							| 2 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 3 |  | dfss4 | ⊢ ( 𝐴  ⊆  ℝ  ↔  ( ℝ  ∖  ( ℝ  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( 𝐴  ∈  dom  vol  →  ( ℝ  ∖  ( ℝ  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 5 |  | mblss | ⊢ ( 𝐵  ∈  dom  vol  →  𝐵  ⊆  ℝ ) | 
						
							| 6 |  | dfss4 | ⊢ ( 𝐵  ⊆  ℝ  ↔  ( ℝ  ∖  ( ℝ  ∖  𝐵 ) )  =  𝐵 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝐵  ∈  dom  vol  →  ( ℝ  ∖  ( ℝ  ∖  𝐵 ) )  =  𝐵 ) | 
						
							| 8 | 4 7 | ineqan12d | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  dom  vol )  →  ( ( ℝ  ∖  ( ℝ  ∖  𝐴 ) )  ∩  ( ℝ  ∖  ( ℝ  ∖  𝐵 ) ) )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 9 | 1 8 | eqtrid | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  dom  vol )  →  ( ℝ  ∖  ( ( ℝ  ∖  𝐴 )  ∪  ( ℝ  ∖  𝐵 ) ) )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 10 |  | cmmbl | ⊢ ( 𝐴  ∈  dom  vol  →  ( ℝ  ∖  𝐴 )  ∈  dom  vol ) | 
						
							| 11 |  | cmmbl | ⊢ ( 𝐵  ∈  dom  vol  →  ( ℝ  ∖  𝐵 )  ∈  dom  vol ) | 
						
							| 12 |  | unmbl | ⊢ ( ( ( ℝ  ∖  𝐴 )  ∈  dom  vol  ∧  ( ℝ  ∖  𝐵 )  ∈  dom  vol )  →  ( ( ℝ  ∖  𝐴 )  ∪  ( ℝ  ∖  𝐵 ) )  ∈  dom  vol ) | 
						
							| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  dom  vol )  →  ( ( ℝ  ∖  𝐴 )  ∪  ( ℝ  ∖  𝐵 ) )  ∈  dom  vol ) | 
						
							| 14 |  | cmmbl | ⊢ ( ( ( ℝ  ∖  𝐴 )  ∪  ( ℝ  ∖  𝐵 ) )  ∈  dom  vol  →  ( ℝ  ∖  ( ( ℝ  ∖  𝐴 )  ∪  ( ℝ  ∖  𝐵 ) ) )  ∈  dom  vol ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  dom  vol )  →  ( ℝ  ∖  ( ( ℝ  ∖  𝐴 )  ∪  ( ℝ  ∖  𝐵 ) ) )  ∈  dom  vol ) | 
						
							| 16 | 9 15 | eqeltrrd | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  dom  vol )  →  ( 𝐴  ∩  𝐵 )  ∈  dom  vol ) |