Metamath Proof Explorer


Theorem inn0f

Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses inn0f.1 𝑥 𝐴
inn0f.2 𝑥 𝐵
Assertion inn0f ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥𝐴 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 inn0f.1 𝑥 𝐴
2 inn0f.2 𝑥 𝐵
3 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
4 3 exbii ( ∃ 𝑥 𝑥 ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
5 1 2 nfin 𝑥 ( 𝐴𝐵 )
6 5 n0f ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴𝐵 ) )
7 df-rex ( ∃ 𝑥𝐴 𝑥𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
8 4 6 7 3bitr4i ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥𝐴 𝑥𝐵 )