Metamath Proof Explorer


Theorem inopn

Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion inopn ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 istopg ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ) )
2 1 ibi ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) )
3 2 simprd ( 𝐽 ∈ Top → ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 )
4 ineq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦 ) = ( 𝐴𝑦 ) )
5 4 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑥𝑦 ) ∈ 𝐽 ↔ ( 𝐴𝑦 ) ∈ 𝐽 ) )
6 ineq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦 ) = ( 𝐴𝐵 ) )
7 6 eleq1d ( 𝑦 = 𝐵 → ( ( 𝐴𝑦 ) ∈ 𝐽 ↔ ( 𝐴𝐵 ) ∈ 𝐽 ) )
8 5 7 rspc2v ( ( 𝐴𝐽𝐵𝐽 ) → ( ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 → ( 𝐴𝐵 ) ∈ 𝐽 ) )
9 3 8 syl5com ( 𝐽 ∈ Top → ( ( 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 ) )
10 9 3impib ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 )