Step |
Hyp |
Ref |
Expression |
1 |
|
istopg |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) |
2 |
1
|
ibi |
⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) |
3 |
2
|
simprd |
⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) |
4 |
|
ineq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝑦 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ↔ ( 𝐴 ∩ 𝑦 ) ∈ 𝐽 ) ) |
6 |
|
ineq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐵 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∩ 𝑦 ) ∈ 𝐽 ↔ ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) ) |
8 |
5 7
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) ) |
9 |
3 8
|
syl5com |
⊢ ( 𝐽 ∈ Top → ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) ) |
10 |
9
|
3impib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |