Metamath Proof Explorer


Theorem inopnd

Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses inopnd.1 ( 𝜑𝐽 ∈ Top )
inopnd.2 ( 𝜑𝐴𝐽 )
inopnd.3 ( 𝜑𝐵𝐽 )
Assertion inopnd ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 inopnd.1 ( 𝜑𝐽 ∈ Top )
2 inopnd.2 ( 𝜑𝐴𝐽 )
3 inopnd.3 ( 𝜑𝐵𝐽 )
4 inopn ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝐽 )