Metamath Proof Explorer
Description: The intersection of two open sets of a topology is an open set.
(Contributed by Glauco Siliprandi, 21-Dec-2024)
|
|
Ref |
Expression |
|
Hypotheses |
inopnd.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
|
|
inopnd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
|
|
inopnd.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) |
|
Assertion |
inopnd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
inopnd.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
2 |
|
inopnd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
3 |
|
inopnd.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) |
4 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |