Metamath Proof Explorer


Theorem inpw

Description: Two ways of expressing a collection of subsets as seen in df-ntr , unimax , and others (Contributed by Zhi Wang, 27-Sep-2024)

Ref Expression
Assertion inpw ( 𝐵𝑉 → ( 𝐴 ∩ 𝒫 𝐵 ) = { 𝑥𝐴𝑥𝐵 } )

Proof

Step Hyp Ref Expression
1 dfin5 ( 𝐴 ∩ 𝒫 𝐵 ) = { 𝑥𝐴𝑥 ∈ 𝒫 𝐵 }
2 elpw2g ( 𝐵𝑉 → ( 𝑥 ∈ 𝒫 𝐵𝑥𝐵 ) )
3 2 rabbidv ( 𝐵𝑉 → { 𝑥𝐴𝑥 ∈ 𝒫 𝐵 } = { 𝑥𝐴𝑥𝐵 } )
4 1 3 syl5eq ( 𝐵𝑉 → ( 𝐴 ∩ 𝒫 𝐵 ) = { 𝑥𝐴𝑥𝐵 } )