Metamath Proof Explorer


Theorem inrab2

Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007)

Ref Expression
Assertion inrab2 ( { 𝑥𝐴𝜑 } ∩ 𝐵 ) = { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 abid1 𝐵 = { 𝑥𝑥𝐵 }
3 1 2 ineq12i ( { 𝑥𝐴𝜑 } ∩ 𝐵 ) = ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∩ { 𝑥𝑥𝐵 } )
4 df-rab { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) }
5 inab ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∩ { 𝑥𝑥𝐵 } ) = { 𝑥 ∣ ( ( 𝑥𝐴𝜑 ) ∧ 𝑥𝐵 ) }
6 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
7 6 anbi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) )
8 an32 ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴𝜑 ) ∧ 𝑥𝐵 ) )
9 7 8 bitri ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴𝜑 ) ∧ 𝑥𝐵 ) )
10 9 abbii { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) } = { 𝑥 ∣ ( ( 𝑥𝐴𝜑 ) ∧ 𝑥𝐵 ) }
11 5 10 eqtr4i ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∩ { 𝑥𝑥𝐵 } ) = { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) }
12 4 11 eqtr4i { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜑 } = ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∩ { 𝑥𝑥𝐵 } )
13 3 12 eqtr4i ( { 𝑥𝐴𝜑 } ∩ 𝐵 ) = { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜑 }