Metamath Proof Explorer


Theorem inrot

Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012)

Ref Expression
Assertion inrot ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐶𝐴 ) ∩ 𝐵 )

Proof

Step Hyp Ref Expression
1 in31 ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐶𝐵 ) ∩ 𝐴 )
2 in32 ( ( 𝐶𝐵 ) ∩ 𝐴 ) = ( ( 𝐶𝐴 ) ∩ 𝐵 )
3 1 2 eqtri ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐶𝐴 ) ∩ 𝐵 )