| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djurf1o | ⊢ inr : V –1-1-onto→ ( { 1o }  ×  V ) | 
						
							| 2 |  | f1ofun | ⊢ ( inr : V –1-1-onto→ ( { 1o }  ×  V )  →  Fun  inr ) | 
						
							| 3 |  | ffvresb | ⊢ ( Fun  inr  →  ( ( inr  ↾  𝐵 ) : 𝐵 ⟶ ( 𝐴  ⊔  𝐵 )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  dom  inr  ∧  ( inr ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) ) ) | 
						
							| 4 | 1 2 3 | mp2b | ⊢ ( ( inr  ↾  𝐵 ) : 𝐵 ⟶ ( 𝐴  ⊔  𝐵 )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  dom  inr  ∧  ( inr ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 5 |  | elex | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ∈  V ) | 
						
							| 6 |  | opex | ⊢ 〈 1o ,  𝑥 〉  ∈  V | 
						
							| 7 |  | df-inr | ⊢ inr  =  ( 𝑥  ∈  V  ↦  〈 1o ,  𝑥 〉 ) | 
						
							| 8 | 6 7 | dmmpti | ⊢ dom  inr  =  V | 
						
							| 9 | 5 8 | eleqtrrdi | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ∈  dom  inr ) | 
						
							| 10 |  | djurcl | ⊢ ( 𝑥  ∈  𝐵  →  ( inr ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 11 | 9 10 | jca | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  dom  inr  ∧  ( inr ‘ 𝑥 )  ∈  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 12 | 4 11 | mprgbir | ⊢ ( inr  ↾  𝐵 ) : 𝐵 ⟶ ( 𝐴  ⊔  𝐵 ) |