Metamath Proof Explorer


Theorem inrresf1

Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022)

Ref Expression
Assertion inrresf1 ( inr ↾ 𝐵 ) : 𝐵1-1→ ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 djurf1o inr : V –1-1-onto→ ( { 1o } × V )
2 f1of1 ( inr : V –1-1-onto→ ( { 1o } × V ) → inr : V –1-1→ ( { 1o } × V ) )
3 1 2 ax-mp inr : V –1-1→ ( { 1o } × V )
4 ssv 𝐵 ⊆ V
5 inrresf ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴𝐵 )
6 f1resf1 ( ( inr : V –1-1→ ( { 1o } × V ) ∧ 𝐵 ⊆ V ∧ ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴𝐵 ) ) → ( inr ↾ 𝐵 ) : 𝐵1-1→ ( 𝐴𝐵 ) )
7 3 4 5 6 mp3an ( inr ↾ 𝐵 ) : 𝐵1-1→ ( 𝐴𝐵 )