Metamath Proof Explorer


Theorem inss

Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014)

Ref Expression
Assertion inss ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐴𝐵 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 ssinss1 ( 𝐴𝐶 → ( 𝐴𝐵 ) ⊆ 𝐶 )
2 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
3 ssinss1 ( 𝐵𝐶 → ( 𝐵𝐴 ) ⊆ 𝐶 )
4 2 3 eqsstrid ( 𝐵𝐶 → ( 𝐴𝐵 ) ⊆ 𝐶 )
5 1 4 jaoi ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐴𝐵 ) ⊆ 𝐶 )