| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 2 | 1 | imbi1i | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ∈  𝐶 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐶 ) ) | 
						
							| 3 |  | iman | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐶 )  ↔  ¬  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ¬  𝑥  ∈  𝐶 ) ) | 
						
							| 4 | 2 3 | bitri | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ∈  𝐶 )  ↔  ¬  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ¬  𝑥  ∈  𝐶 ) ) | 
						
							| 5 |  | eldif | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  𝐶 )  ↔  ( 𝑥  ∈  𝐵  ∧  ¬  𝑥  ∈  𝐶 ) ) | 
						
							| 6 | 5 | anbi2i | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( 𝐵  ∖  𝐶 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  𝑥  ∈  𝐶 ) ) ) | 
						
							| 7 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵  ∖  𝐶 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 8 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ¬  𝑥  ∈  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  𝑥  ∈  𝐶 ) ) ) | 
						
							| 9 | 6 7 8 | 3bitr4ri | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ¬  𝑥  ∈  𝐶 )  ↔  𝑥  ∈  ( 𝐴  ∩  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 10 | 4 9 | xchbinx | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ∈  𝐶 )  ↔  ¬  𝑥  ∈  ( 𝐴  ∩  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 11 | 10 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ∈  𝐶 )  ↔  ∀ 𝑥 ¬  𝑥  ∈  ( 𝐴  ∩  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 12 |  | df-ss | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ↔  ∀ 𝑥 ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ∈  𝐶 ) ) | 
						
							| 13 |  | eq0 | ⊢ ( ( 𝐴  ∩  ( 𝐵  ∖  𝐶 ) )  =  ∅  ↔  ∀ 𝑥 ¬  𝑥  ∈  ( 𝐴  ∩  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ↔  ( 𝐴  ∩  ( 𝐵  ∖  𝐶 ) )  =  ∅ ) |