Metamath Proof Explorer


Theorem int3

Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. Conventional form of int3 is 3expia . (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis int3.1 (    (    𝜑    ,    𝜓    ,    𝜒    )    ▶    𝜃    )
Assertion int3 (    (    𝜑    ,    𝜓    )    ▶    ( 𝜒𝜃 )    )

Proof

Step Hyp Ref Expression
1 int3.1 (    (    𝜑    ,    𝜓    ,    𝜒    )    ▶    𝜃    )
2 1 dfvd3ani ( ( 𝜑𝜓𝜒 ) → 𝜃 )
3 2 3expia ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )
4 3 dfvd2anir (    (    𝜑    ,    𝜓    )    ▶    ( 𝜒𝜃 )    )