| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intab.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | intab.2 | ⊢ { 𝑥  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 ) }  ∈  V | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  =  𝐴  ↔  𝑥  =  𝐴 ) ) | 
						
							| 4 | 3 | anbi2d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝜑  ∧  𝑧  =  𝐴 )  ↔  ( 𝜑  ∧  𝑥  =  𝐴 ) ) ) | 
						
							| 5 | 4 | exbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  ↔  ∃ 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 ) ) ) | 
						
							| 6 | 5 | cbvabv | ⊢ { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  =  { 𝑥  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 ) } | 
						
							| 7 | 6 2 | eqeltri | ⊢ { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  ∈  V | 
						
							| 8 |  | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) | 
						
							| 9 | 8 | nfab | ⊢ Ⅎ 𝑦 { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } | 
						
							| 10 | 9 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥  =  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } | 
						
							| 11 |  | eleq2 | ⊢ ( 𝑥  =  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑥  =  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  →  ( ( 𝜑  →  𝐴  ∈  𝑥 )  ↔  ( 𝜑  →  𝐴  ∈  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } ) ) ) | 
						
							| 13 | 10 12 | albid | ⊢ ( 𝑥  =  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  →  ( ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 )  ↔  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } ) ) ) | 
						
							| 14 | 7 13 | elab | ⊢ ( { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  ∈  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) }  ↔  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } ) ) | 
						
							| 15 |  | 19.8a | ⊢ ( ( 𝜑  ∧  𝑧  =  𝐴 )  →  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝜑  →  ( 𝑧  =  𝐴  →  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) ) ) | 
						
							| 17 | 16 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑧 ( 𝑧  =  𝐴  →  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) ) ) | 
						
							| 18 | 1 | sbc6 | ⊢ ( [ 𝐴  /  𝑧 ] ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  ↔  ∀ 𝑧 ( 𝑧  =  𝐴  →  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) ) ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( 𝜑  →  [ 𝐴  /  𝑧 ] ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) ) | 
						
							| 20 |  | df-sbc | ⊢ ( [ 𝐴  /  𝑧 ] ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  ↔  𝐴  ∈  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( 𝜑  →  𝐴  ∈  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } ) | 
						
							| 22 | 14 21 | mpgbir | ⊢ { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  ∈  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) } | 
						
							| 23 |  | intss1 | ⊢ ( { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  ∈  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) }  →  ∩  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) }  ⊆  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ∩  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) }  ⊆  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } | 
						
							| 25 |  | 19.29r | ⊢ ( ( ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) )  →  ∃ 𝑦 ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  ( 𝜑  →  𝐴  ∈  𝑥 ) ) ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  ( 𝜑  →  𝐴  ∈  𝑥 ) )  →  𝑧  =  𝐴 ) | 
						
							| 27 |  | pm3.35 | ⊢ ( ( 𝜑  ∧  ( 𝜑  →  𝐴  ∈  𝑥 ) )  →  𝐴  ∈  𝑥 ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  ( 𝜑  →  𝐴  ∈  𝑥 ) )  →  𝐴  ∈  𝑥 ) | 
						
							| 29 | 26 28 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  ( 𝜑  →  𝐴  ∈  𝑥 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 30 | 29 | exlimiv | ⊢ ( ∃ 𝑦 ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  ( 𝜑  →  𝐴  ∈  𝑥 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 31 | 25 30 | syl | ⊢ ( ( ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 32 | 31 | ex | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  →  ( ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 33 | 32 | alrimiv | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  →  ∀ 𝑥 ( ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 34 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 35 | 34 | elintab | ⊢ ( 𝑧  ∈  ∩  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) }  ↔  ∀ 𝑥 ( ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 36 | 33 35 | sylibr | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 )  →  𝑧  ∈  ∩  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) } ) | 
						
							| 37 | 36 | abssi | ⊢ { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) }  ⊆  ∩  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) } | 
						
							| 38 | 24 37 | eqssi | ⊢ ∩  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑧  =  𝐴 ) } | 
						
							| 39 | 38 6 | eqtri | ⊢ ∩  { 𝑥  ∣  ∀ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) }  =  { 𝑥  ∣  ∃ 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 ) } |