Metamath Proof Explorer


Theorem intabs

Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005)

Ref Expression
Hypotheses intabs.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
intabs.2 ( 𝑥 = { 𝑦𝜓 } → ( 𝜑𝜒 ) )
intabs.3 ( { 𝑦𝜓 } ⊆ 𝐴𝜒 )
Assertion intabs { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑥𝜑 }

Proof

Step Hyp Ref Expression
1 intabs.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 intabs.2 ( 𝑥 = { 𝑦𝜓 } → ( 𝜑𝜒 ) )
3 intabs.3 ( { 𝑦𝜓 } ⊆ 𝐴𝜒 )
4 sseq1 ( 𝑥 = { 𝑦𝜓 } → ( 𝑥𝐴 { 𝑦𝜓 } ⊆ 𝐴 ) )
5 4 2 anbi12d ( 𝑥 = { 𝑦𝜓 } → ( ( 𝑥𝐴𝜑 ) ↔ ( { 𝑦𝜓 } ⊆ 𝐴𝜒 ) ) )
6 5 3 intmin3 ( { 𝑦𝜓 } ∈ V → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑦𝜓 } )
7 intnex ( ¬ { 𝑦𝜓 } ∈ V ↔ { 𝑦𝜓 } = V )
8 ssv { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ V
9 sseq2 ( { 𝑦𝜓 } = V → ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑦𝜓 } ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ V ) )
10 8 9 mpbiri ( { 𝑦𝜓 } = V → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑦𝜓 } )
11 7 10 sylbi ( ¬ { 𝑦𝜓 } ∈ V → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑦𝜓 } )
12 6 11 pm2.61i { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑦𝜓 }
13 1 cbvabv { 𝑥𝜑 } = { 𝑦𝜓 }
14 13 inteqi { 𝑥𝜑 } = { 𝑦𝜓 }
15 12 14 sseqtrri { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥𝜑 }
16 simpr ( ( 𝑥𝐴𝜑 ) → 𝜑 )
17 16 ss2abi { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥𝜑 }
18 intss ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥𝜑 } → { 𝑥𝜑 } ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
19 17 18 ax-mp { 𝑥𝜑 } ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
20 15 19 eqssi { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑥𝜑 }