Metamath Proof Explorer


Theorem intcld

Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion intcld ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 intiin 𝐴 = 𝑥𝐴 𝑥
2 dfss3 ( 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) )
3 iincld ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) )
4 2 3 sylan2b ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) )
5 1 4 eqeltrid ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) )