Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | intcld | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) → ∩ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intiin | ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
2 | dfss3 | ⊢ ( 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) | |
3 | iincld | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) | |
4 | 2 3 | sylan2b | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) |
5 | 1 4 | eqeltrid | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) → ∩ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |