Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inteq | ⊢ ( 𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ) | |
| 2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 } ) |
| 3 | dfint2 | ⊢ ∩ 𝐴 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } | |
| 4 | dfint2 | ⊢ ∩ 𝐵 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 } | |
| 5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵 ) |