Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | inteq | ⊢ ( 𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ) | |
2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 } ) |
3 | dfint2 | ⊢ ∩ 𝐴 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } | |
4 | dfint2 | ⊢ ∩ 𝐵 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 } | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵 ) |