Metamath Proof Explorer


Theorem inteq

Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999)

Ref Expression
Assertion inteq ( 𝐴 = 𝐵 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 raleq ( 𝐴 = 𝐵 → ( ∀ 𝑦𝐴 𝑥𝑦 ↔ ∀ 𝑦𝐵 𝑥𝑦 ) )
2 1 abbidv ( 𝐴 = 𝐵 → { 𝑥 ∣ ∀ 𝑦𝐴 𝑥𝑦 } = { 𝑥 ∣ ∀ 𝑦𝐵 𝑥𝑦 } )
3 dfint2 𝐴 = { 𝑥 ∣ ∀ 𝑦𝐴 𝑥𝑦 }
4 dfint2 𝐵 = { 𝑥 ∣ ∀ 𝑦𝐵 𝑥𝑦 }
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 𝐴 = 𝐵 )