Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | intexrab | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∩ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexab | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V ) | |
2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
3 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
4 | 3 | inteqi | ⊢ ∩ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
5 | 4 | eleq1i | ⊢ ( ∩ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ↔ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V ) |
6 | 1 2 5 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∩ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |