Metamath Proof Explorer


Theorem intexrab

Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003)

Ref Expression
Assertion intexrab ( ∃ 𝑥𝐴 𝜑 { 𝑥𝐴𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 intexab ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
2 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
4 3 inteqi { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
5 4 eleq1i ( { 𝑥𝐴𝜑 } ∈ V ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
6 1 2 5 3bitr4i ( ∃ 𝑥𝐴 𝜑 { 𝑥𝐴𝜑 } ∈ V )