Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
2 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
3 |
1 2
|
sylib |
⊢ ( ( 𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ V ) |
4 |
|
dfss3 |
⊢ ( 𝐴 ⊆ Univ ↔ ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ) |
5 |
|
grutr |
⊢ ( 𝑢 ∈ Univ → Tr 𝑢 ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ → ∀ 𝑢 ∈ 𝐴 Tr 𝑢 ) |
7 |
4 6
|
sylbi |
⊢ ( 𝐴 ⊆ Univ → ∀ 𝑢 ∈ 𝐴 Tr 𝑢 ) |
8 |
|
trint |
⊢ ( ∀ 𝑢 ∈ 𝐴 Tr 𝑢 → Tr ∩ 𝐴 ) |
9 |
7 8
|
syl |
⊢ ( 𝐴 ⊆ Univ → Tr ∩ 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅ ) → Tr ∩ 𝐴 ) |
11 |
|
grupw |
⊢ ( ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ) → 𝒫 𝑥 ∈ 𝑢 ) |
12 |
11
|
ex |
⊢ ( 𝑢 ∈ Univ → ( 𝑥 ∈ 𝑢 → 𝒫 𝑥 ∈ 𝑢 ) ) |
13 |
12
|
ral2imi |
⊢ ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ → ( ∀ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 → ∀ 𝑢 ∈ 𝐴 𝒫 𝑥 ∈ 𝑢 ) ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
14
|
elint2 |
⊢ ( 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
16 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
17 |
16
|
elint2 |
⊢ ( 𝒫 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 𝒫 𝑥 ∈ 𝑢 ) |
18 |
13 15 17
|
3imtr4g |
⊢ ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ → ( 𝑥 ∈ ∩ 𝐴 → 𝒫 𝑥 ∈ ∩ 𝐴 ) ) |
19 |
18
|
imp |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝑥 ∈ ∩ 𝐴 ) → 𝒫 𝑥 ∈ ∩ 𝐴 ) |
20 |
19
|
adantlr |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → 𝒫 𝑥 ∈ ∩ 𝐴 ) |
21 |
|
r19.26 |
⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ) ↔ ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ ∀ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) ) |
22 |
|
grupr |
⊢ ( ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) → { 𝑥 , 𝑦 } ∈ 𝑢 ) |
23 |
22
|
3expia |
⊢ ( ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ) → ( 𝑦 ∈ 𝑢 → { 𝑥 , 𝑦 } ∈ 𝑢 ) ) |
24 |
23
|
ral2imi |
⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ) → ( ∀ 𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 → ∀ 𝑢 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) |
25 |
21 24
|
sylbir |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ ∀ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) → ( ∀ 𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 → ∀ 𝑢 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) |
26 |
|
vex |
⊢ 𝑦 ∈ V |
27 |
26
|
elint2 |
⊢ ( 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 ) |
28 |
|
prex |
⊢ { 𝑥 , 𝑦 } ∈ V |
29 |
28
|
elint2 |
⊢ ( { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
30 |
25 27 29
|
3imtr4g |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ ∀ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) → ( 𝑦 ∈ ∩ 𝐴 → { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) |
31 |
15 30
|
sylan2b |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑦 ∈ ∩ 𝐴 → { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) |
32 |
31
|
ralrimiv |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) |
33 |
32
|
adantlr |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) |
34 |
|
elmapg |
⊢ ( ( ∩ 𝐴 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ↔ 𝑦 : 𝑥 ⟶ ∩ 𝐴 ) ) |
35 |
34
|
elvd |
⊢ ( ∩ 𝐴 ∈ V → ( 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ↔ 𝑦 : 𝑥 ⟶ ∩ 𝐴 ) ) |
36 |
2 35
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ↔ 𝑦 : 𝑥 ⟶ ∩ 𝐴 ) ) |
37 |
36
|
ad2antlr |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ↔ 𝑦 : 𝑥 ⟶ ∩ 𝐴 ) ) |
38 |
|
intss1 |
⊢ ( 𝑢 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑢 ) |
39 |
|
fss |
⊢ ( ( 𝑦 : 𝑥 ⟶ ∩ 𝐴 ∧ ∩ 𝐴 ⊆ 𝑢 ) → 𝑦 : 𝑥 ⟶ 𝑢 ) |
40 |
38 39
|
sylan2 |
⊢ ( ( 𝑦 : 𝑥 ⟶ ∩ 𝐴 ∧ 𝑢 ∈ 𝐴 ) → 𝑦 : 𝑥 ⟶ 𝑢 ) |
41 |
40
|
ralrimiva |
⊢ ( 𝑦 : 𝑥 ⟶ ∩ 𝐴 → ∀ 𝑢 ∈ 𝐴 𝑦 : 𝑥 ⟶ 𝑢 ) |
42 |
|
gruurn |
⊢ ( ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ∧ 𝑦 : 𝑥 ⟶ 𝑢 ) → ∪ ran 𝑦 ∈ 𝑢 ) |
43 |
42
|
3expia |
⊢ ( ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ) → ( 𝑦 : 𝑥 ⟶ 𝑢 → ∪ ran 𝑦 ∈ 𝑢 ) ) |
44 |
43
|
ral2imi |
⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 ∈ Univ ∧ 𝑥 ∈ 𝑢 ) → ( ∀ 𝑢 ∈ 𝐴 𝑦 : 𝑥 ⟶ 𝑢 → ∀ 𝑢 ∈ 𝐴 ∪ ran 𝑦 ∈ 𝑢 ) ) |
45 |
21 44
|
sylbir |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ ∀ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) → ( ∀ 𝑢 ∈ 𝐴 𝑦 : 𝑥 ⟶ 𝑢 → ∀ 𝑢 ∈ 𝐴 ∪ ran 𝑦 ∈ 𝑢 ) ) |
46 |
15 45
|
sylan2b |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝑥 ∈ ∩ 𝐴 ) → ( ∀ 𝑢 ∈ 𝐴 𝑦 : 𝑥 ⟶ 𝑢 → ∀ 𝑢 ∈ 𝐴 ∪ ran 𝑦 ∈ 𝑢 ) ) |
47 |
41 46
|
syl5 |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑦 : 𝑥 ⟶ ∩ 𝐴 → ∀ 𝑢 ∈ 𝐴 ∪ ran 𝑦 ∈ 𝑢 ) ) |
48 |
26
|
rnex |
⊢ ran 𝑦 ∈ V |
49 |
48
|
uniex |
⊢ ∪ ran 𝑦 ∈ V |
50 |
49
|
elint2 |
⊢ ( ∪ ran 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∪ ran 𝑦 ∈ 𝑢 ) |
51 |
47 50
|
syl6ibr |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑦 : 𝑥 ⟶ ∩ 𝐴 → ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) |
52 |
51
|
adantlr |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑦 : 𝑥 ⟶ ∩ 𝐴 → ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) |
53 |
37 52
|
sylbid |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) → ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) |
54 |
53
|
ralrimiv |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ∪ ran 𝑦 ∈ ∩ 𝐴 ) |
55 |
20 33 54
|
3jca |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) |
56 |
55
|
ralrimiva |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝐴 ( 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) |
57 |
4 56
|
sylanb |
⊢ ( ( 𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝐴 ( 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) |
58 |
|
elgrug |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ Univ ↔ ( Tr ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) ) ) |
59 |
58
|
biimpar |
⊢ ( ( ∩ 𝐴 ∈ V ∧ ( Tr ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ( ∩ 𝐴 ↑m 𝑥 ) ∪ ran 𝑦 ∈ ∩ 𝐴 ) ) ) → ∩ 𝐴 ∈ Univ ) |
60 |
3 10 57 59
|
syl12anc |
⊢ ( ( 𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Univ ) |