Metamath Proof Explorer


Theorem intid

Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009)

Ref Expression
Hypothesis intid.1 𝐴 ∈ V
Assertion intid { 𝑥𝐴𝑥 } = { 𝐴 }

Proof

Step Hyp Ref Expression
1 intid.1 𝐴 ∈ V
2 snex { 𝐴 } ∈ V
3 eleq2 ( 𝑥 = { 𝐴 } → ( 𝐴𝑥𝐴 ∈ { 𝐴 } ) )
4 1 snid 𝐴 ∈ { 𝐴 }
5 3 4 intmin3 ( { 𝐴 } ∈ V → { 𝑥𝐴𝑥 } ⊆ { 𝐴 } )
6 2 5 ax-mp { 𝑥𝐴𝑥 } ⊆ { 𝐴 }
7 1 elintab ( 𝐴 { 𝑥𝐴𝑥 } ↔ ∀ 𝑥 ( 𝐴𝑥𝐴𝑥 ) )
8 id ( 𝐴𝑥𝐴𝑥 )
9 7 8 mpgbir 𝐴 { 𝑥𝐴𝑥 }
10 snssi ( 𝐴 { 𝑥𝐴𝑥 } → { 𝐴 } ⊆ { 𝑥𝐴𝑥 } )
11 9 10 ax-mp { 𝐴 } ⊆ { 𝑥𝐴𝑥 }
12 6 11 eqssi { 𝑥𝐴𝑥 } = { 𝐴 }