Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | intid.1 | ⊢ 𝐴 ∈ V | |
Assertion | intid | ⊢ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } = { 𝐴 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intid.1 | ⊢ 𝐴 ∈ V | |
2 | snex | ⊢ { 𝐴 } ∈ V | |
3 | eleq2 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) | |
4 | 1 | snid | ⊢ 𝐴 ∈ { 𝐴 } |
5 | 3 4 | intmin3 | ⊢ ( { 𝐴 } ∈ V → ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ⊆ { 𝐴 } ) |
6 | 2 5 | ax-mp | ⊢ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ⊆ { 𝐴 } |
7 | 1 | elintab | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ↔ ∀ 𝑥 ( 𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥 ) ) |
8 | id | ⊢ ( 𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥 ) | |
9 | 7 8 | mpgbir | ⊢ 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } |
10 | snssi | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } → { 𝐴 } ⊆ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ) | |
11 | 9 10 | ax-mp | ⊢ { 𝐴 } ⊆ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } |
12 | 6 11 | eqssi | ⊢ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } = { 𝐴 } |